<u>Settore Industriale – Meccanica</u> <u>I PROVA JUNIOR</u>

Il candidato descriva i sistemi di produzione di energia elettrica su larga scala, riservando particolare attenzione alle emissioni inquinanti ed ai relativi sistemi di abbattimento.

II PROVA JUNIOR

Il candidato descriva procedura di dimensionamento di massima di un condensatore inserito in un impianto a vapore, supponendo note la potenza \mathbf{P} dell'impianto ed il suo rendimento $\mathbf{\eta}$. Nello specifico, si valutino le dimensioni di tutti i principali componenti del condensatore (lunghezze e diametro dei tubi, dimensioni complessive del condensatore, distanze tra i tubi, disposizione dei tubi). Qualora sia necessaria la conoscenza di altri dati oltre alla potenza \mathbf{P} ed al rendimento $\mathbf{\eta}$, il candidato li ipotizzi, dandone settagliata spiegazione.

PROVA PROGETTUALE JUNIOR - MECCANICA

Un impianto a vapore per la produzione di energia elettrica è caratterizzato da un doppio surriscaldamento del vapore e da tre spillamenti rigenerativi e presenta le seguenti caratteristiche funzionali:

- pressione massima del ciclo = 170 bar
- pressione al condensatore = 0.05 bar
- temperatura massima del ciclo = 540 °C
- rendimento isoentropico della turbina = 0.85
- rendimento organico d'impianto = 0.98
- rendimento GVC = 0.95
- potenza sviluppata = 320 MW

Dei tre scambiatori rigenerativi due sono a superficie con fascio tubiero controcorrente e sono caratterizzati da un salto minimo di temperatura tra acqua di alimento e liquido saturo pari a 5°C ed uno è a miscela.

Sotto tali dati progettuali, il candidato determini:

- Il grado ottimale di rigenerazione e le pressioni di spillamento del vapore;
- le condizioni termodinamiche nei punti significativi dell'impianto, in termini di pressione, temperatura, entalpia, entropia e titolo (a tale proposito è possibile assumere la pressione di risurriscaldamento all'incirca pari a quella dello spillamento di alta pressione);
- le portate di spillamento (per il calcolo delle frazioni relative si suggerisce di considerare unitaria la portata in uscita dalla turbina);
- la portata d'acqua di raffreddamento al condensatore, considerando di poter prelevare acqua a 18°C e mantenendo lo stesso salto minimo di temperatura impiegato negli scambiatori rigenerativi;
- il rendimento globale dell'impianto ed il consumo di combustibile, supponendo che il potere calorifico di quest'ultimo sia pari a 40000 kJ/kg.

Il candidato disegni inoltre un layout indicativo per i vari componenti dell'impianto e fornisca la rappresentazione del ciclo completo in almeno un piano termodinamico di sua scelta.

Infine, basandosi su ipotesi opportune, il candidato effettui il <u>dimensionamento di massima dei</u> <u>due scambiatori di calore rigenerativi a superficie</u>.