Esame di Stato per l’Abilitazione all’Esercizio della Professione di
Ingegnere Specialista/Magistrale
I Sessione – 15 Giugno 2011

Settore Civile-Ambientale

I Prova scritta

Il candidato scelga tra i seguenti temi:

TEMA 1

Con riferimento ad un invaso artificiale, il candidato descriva le problematiche principali in fase di progettazione e gli aspetti della gestione dello stesso.

TEMA 2

Il candidato descriva in che termini la scelta del materiale influenza la progettazione strutturale di un edificio, con riferimento alle caratteristiche di resistenza, realizzazione, durata, manutenzione e costo.

TEMA 3

Il ruolo della struttura nell’opera architettonica.
Il candidato può fare riferimento a qualsiasi opera, contesto geografico e periodo storico.
I Prova scritta

Il candidato svolga uno dei seguenti temi:

TEMA 1

La presenza di tempi di setup in un sistema produttivo vincola la frequenza con cui si possono effettuare i cambi di lavorazione nei vari macchinari se si vuole evitare che il contenuto dei buffer diverga. Il candidato illustri analiticamente questo fatto indicando le condizioni sotto cui l’intervallo di frequenze ammesse è non vuoto e determini la frequenza di setup a regime per alcune delle politiche che, a sua scelta, possono essere utilizzate per controllare con successo questo tipo di sistemi.

TEMA 2

Il candidato illustri potenzialità e limiti connessi all’utilizzo delle fonti rinnovabili per la copertura dei fabbisogni energetici civili.

TEMA 3

Il candidato esponga i principali problemi di dimensionamento nella logistica aziendale analizzando gli eventuali impatti delle differenti scelte progettuali ad essi associate sull’operatività della supply chain.

TEMA 4

Con riferimento al problema dell’inquinamento urbano ed alle vigenti normative nazionali e comunitarie, il candidato descriva le principali problematiche nel settore della mobilità, evidenzi le soluzioni attualmente adottate, discuta le prospettive tecnologiche e, in generale, le prospettive future del settore.

TEMA 5

Con riferimento al processo di produzione di monete, individuare e descrivere possibili controlli distruttivi e non distruttivi da effettuare sul materiale nelle varie fasi di processo.

TEMA 6

Le apparecchiature elettromedicali hanno raggiunto prestazioni davvero sorprendenti in termini di qualità e sicurezza. In quali contesti l’opera dell’ingegnere medico può contribuire al miglioramento della qualità della vita per mezzo di sistemi tecnologicamente avanzati?
I Prova scritta

Il candidato svolga uno dei seguenti temi:

TEMA 1

La presenza di tempi di setup in un sistema produttivo vincola la frequenza con cui si possono effettuare i cambi di lavorazione nei vari macchinari se si vuole evitare che il contenuto dei buffer diverga. Il candidato illustri analiticamente questo fatto indicando le condizioni sotto cui l’intervallo di frequenze ammesse è non vuoto e determini la frequenza di setup a regime per alcune delle politiche che, a sua scelta, possono essere utilizzate per controllare con successo questo tipo di sistemi.

TEMA 2

Il dispositivo MOSFET, nel lungo processo di miniaturizzazione, ha raggiunto i suoi limiti funzionali intrinseci. Quale potrà essere lo sviluppo ulteriore della elettronica analogica e soprattutto di quella digitale tenuto conto della crescente domanda di memorie di sempre più elevate capacità e prestazioni?

TEMA 3

Il candidato esponga i principali problemi di dimensionamento nella logistica aziendale analizzando gli eventuali impatti delle differenti scelte progettuali ad essi associate sull’operatività della supply chain.

TEMA 4

Si descrivano i vari tipi di architetture software a partire da quelle client-server. Si analizzi anche la loro peculiarità in ambito web.

TEMA 5

Le prestazioni dei sistemi di telecomunicazione e di telerilevamento possono essere migliorate attraverso tecniche di elaborazione adattive. Il candidato descriva un sistema in cui le tecniche adattive risultano avere un ruolo fontamentale evidenziandone i guadagni prestazionali che si conseguono con il loro utilizzo.
Esame di stato
Laurea, settore civile – ambientale
2^ prova scritta

Il candidato descriva i parametri impiegati per valutare la richiesta di ossigeno di un'acqua reflua, indicando anche alcuni dei principali metodi analitici comunemente utilizzati per determinarli.

Per quanto concerne la domanda biochimica di ossigeno (BOD), dopo aver brevemente descritto l'andamento cinetico della concentrazione di BOD in una tipica acqua reflua, il candidato ricavi i valori dei parametri cinetici della curva del BOD dai dati riportati in Tabella 1, applicando il metodo di Thomas oppure il metodo differenziale.

Infine, si determinino i valori del BOD a 5 e 15 giorni (d).

Tabella 1. Dati di concentrazione del BOD in funzione del tempo ottenuti da prove sperimentali condotte in modalità batch su un'acqua reflua urbana.

<table>
<thead>
<tr>
<th>Tempo (d)</th>
<th>conc. BOD (mgO₂/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>82</td>
</tr>
<tr>
<td>7</td>
<td>160</td>
</tr>
<tr>
<td>9</td>
<td>185</td>
</tr>
<tr>
<td>12</td>
<td>240</td>
</tr>
<tr>
<td>17</td>
<td>310</td>
</tr>
<tr>
<td>20</td>
<td>325</td>
</tr>
<tr>
<td>25</td>
<td>355</td>
</tr>
<tr>
<td>33</td>
<td>390</td>
</tr>
</tbody>
</table>
Con riferimento al dimensionamento e progetto delle strutture per un edificio per civile abitazione, il candidato presenti un programma di prove preliminari da richiedere e da eseguire sul terreno di fondazione, e commenti la scelta progettuale delle strutture di fondazione.
Edile - II Prova scritta

Il candidato esponga i criteri di progettazione di un edificio scolastico destinato a scuola secondaria di primo grado, con 12 classi, uffici, aula polivalente, servizi e una palestra con accesso indipendente.
Il tema va svolto nella forma di una relazione progettuale generale, con l’eventuale uso di schemi grafici, toccando gli aspetti urbanistici, distributivi, costruttivi, impiantistici, statici, ecc.
Il candidato descriva cosa si intende per specifica di precisione di un sistema di controllo e, in un ambito a sua scelta, illustri quali metodologie possono essere impiegate per la sintesi di un controllore che assicuri tale specifica.
Esame di Stato per l’Abilitazione all’Esercizio della Professione di
Ingegnere Specialista/Magistrale
I Sessione – 16 Giugno 2011

Settore Industriale

Energetica - 2a Prova Scritta

Il candidato illustri in maniera insieme semplice ed efficace il concetto di “fuori progetto” nel funzionamento delle macchine e dei sistemi energetici e le principali cause che lo generano.
Compito Ingegneria Medica
2° prova Scritta
Esercizio 1
Dato il circuito in figura con un op-amp ideale e con \( R_2 = 10^6 \Omega \), si calcoli
1. Il valore di \( R_1 \) per avere un guadagno pari a 1001;
2. Il valore minimo del salto termico tra la giunzione calda e quella fredda di una termocoppia avente potere termoelettrico di \( 30 \mu V/\degree C \), per avere in uscita un rapporto segnale rumore \( (S/N) \geq 30 \) considerando come intervallo di frequenza \( \Delta f = 1 \text{Hz} \).
N.B.: le due resistenze sono da considerarsi rumorose.

![Circuit diagram](image1)

Esercizio 2
Dato il circuito in figura si calcoli:
1. La costante di tempo del circuito;
2. Il tempo necessario per avere sul condensatore, dopo aver chiuso l'interruttore, una tensione pari a 0.5 V;
3. Il valore di \( V_{\text{in}} \) per avere, nello stesso intervallo di tempo una tensione di uscita di -1V.
Dati \( R_2 = 3R_1 = 3 \text{k}\Omega \); \( C = 2 \times 10^6 \text{F} \); \( V_{\text{in}} = 10 \text{V} \).

![Circuit diagram](image2)
Il candidato esponga le principali tecniche di project management mettendo in evidenza le differenti esigenze nella pianificazione di breve, medio e lungo periodo in tale ambito.
Meccanica (Macchine) - II Prova scritta

Il candidato enunci i criteri di progettazione di un compressore assiale monostadio e ne descriva il comportamento in off-design (curve caratteristiche) sia in condizioni ideali che in condizioni ideali.
Settore Industriale

Metallurgia - 2° Prova Specialistica

Esaminare i possibili materiali metallici da impiegare per la produzione di una ruota dentata soggetta ad usura, fatica ed urti, a temperatura ambiente. Inoltre, indicare i trattamenti termici e/o termochimici da effettuare per conseguire un miglioramento delle caratteristiche superficiali, individuando quelli economicamente più vantaggiosi.
Compito Ingegneria Elettronica
2° prova Scritta

Esercizio 1
Dato il circuito in figura disegnare l’andamento della tensione di uscita V\textsubscript{out} in presenza del segnale di ingresso V\textsubscript{in} per i due casi:

1) Amplificatore operazionale ideale \( A(\omega) = \infty \) \( V_\omega \)

2) Amplificatore operazionale ideale

\[
A(\omega) = \frac{A_0}{1 + j\frac{\omega}{\omega_0}}
\]

con \( \omega_0 = \frac{\omega_0}{2\pi} = 1Hz \)

[Diagramma del circuito con segnale d'ingresso e tensioni V\textsubscript{in} e V\textsubscript{out}]

Dati: \( R_1 = R_2 = 4k\Omega; C_1 = 10^{-5}F; A_0 = 10^5 \)

N.B.: si consideri il diodo ideale.

Esercizio 2
Dato il circuito in figura, calcolare l’espressione dell’impedenza vista tra i morsetti A e B. Calcolare poi i valori che dovrebbero avere le resistenze affinché tale circuito si comporti da generatore di corrente ideale quando viene connesso un carico \( Z_0 = 30k\Omega \) e la corrente che scorre ai capi del carico. Calcolare inoltre la sensibilità della corrente del generatore rispetto alle variazioni della resistenza \( R_S \).

Dati: \( V_{in} = 4V \); \( R_1 = R_2 = 2M\Omega; \) \( R_4 = 1.7k\Omega; \) \( R_3 = 2M\Omega \). Considerare l’op-amp ideale.

[Diagramma del circuito con morsetti A e B e generatore ideale]
Esame di Stato per l’Abilitazione all’Esercizio della Professione di
Ingegnere Specialista/Magistrale
I Sessione – 16 Giugno 2011

Settore dell’Informazione

Seconda prova scritta - Informatica

Si descrivano gli elementi fondamentali della pianificazione dei progetti software, soffermandosi in particolare sulla descrizione di una o più tecniche di stima di durata, costi ed effort di un progetto software. Si forniscano inoltre adeguati esempi applicativi a scelta del candidato.
Il Prova scritta - Telecomunicazioni

I moderni sistemi radiomobili prevedono procedure per il dispiegamento nell’area di operatività diverse dalla semplice procedura di rispetto dei parametri di ricetrasmissione di un collegamento radio fisso. Il candidato descriva la procedura di pianificazione delle stazioni radiobase di un sistema radiomobile in funzione del servizio da fornire.
Si dimensioni la rete fognaria unitaria riportata in allegato utilizzando i dati riportati nella tabella seguente e la legge di probabilità pluviometrica

\[ h_{t,20} = K_T \cdot a \cdot t^n \] [mm]

dove

- \( K_{T20} = 1.95 \)
- \( a = 32.2 \text{ mm/h} \)
- \( n = 0.50 \) per \( t < 1 \text{h} \) e 0.33 per \( t > 1 \text{h} \).

Nel nodo F è prevista la realizzazione di un partitore ed un impianto di sollevamento che consente di convogliare al depuratore una portata pari a 6 volte la portata media nera.

Le acque eccedenti la portata di cui sopra sono recapitate nel fosso naturale presente nell’area in progetto.

Le caratteristiche del bacino drenato (percentuale impermeabile, conformazione) sono reperibili dalla cartografia di base.

Per le portate fecali si consideri una dotazione idrica di 300 l/abit/giorno con un coefficiente di punta pari a 3.00. Densità abitativa pari a 250 abit/etrao.

Si chiede:

1. Il dimensionamento della rete fognaria unitaria con la descrizione dei criteri di scelta della tipologia dei collettori;
2. I profili della rete di collettori;
3. La descrizione delle opere necessarie alla corretta manutenzione della rete ed il disegno di un pozzetto di ispezione e confluenza;
4. Il dimensionamento del partitore e dell’impianto di sollevamento al depuratore con quota di recapito pari a 234 m s.m.m. posto ad una distanza di 480 m;
5. Per l’impianto di sollevamento si imposti il dimensionamento strutturale ai sensi della normativa vigente:
   a. Classe di esposizione ambientale opere a contatto con i liquami: XA2;
   b. Zona sismica 2 B;
   c. Categoria del suolo: C;
   d. Categoria topografica: T1;
   e. Inquadramento geologico - tecnico:
      i. falda a -3.00 dal piano campagna 17 kN/m²;
      ii. peso dell’unità di volume 0,05 kPa;
      iii. coesione 30°;
      iv. angolo di resistenza al taglio 150 kg/cm².

<table>
<thead>
<tr>
<th>SLD</th>
<th>SLV</th>
</tr>
</thead>
<tbody>
<tr>
<td>( T_r ) [anni]</td>
<td>40</td>
</tr>
<tr>
<td>( a_g )</td>
<td>0.075g</td>
</tr>
<tr>
<td>( T_c^* ) [s]</td>
<td>0.267</td>
</tr>
</tbody>
</table>
Dimensionare un capannone industriale, a pianta rettangolare di m. 12 x 24 m, a copertura con tegoli prefabbricati, con riferimento agli elementi portanti orizzontali, con pilastri prefabbricati e fondazioni gettate in opera. La struttura ricade in zona sismica, e le azioni orizzontali, applicate a livello di copertura, si possono considerare, convenzionalmente, pari a 1/10 del peso dell’edificio. L’altezza libera del capannone è di m. 8.50. I carichi verticali sono quelli da normativa. Il candidato è libero nella scelta dei materiali, della tipologia e delle assunzioni sul terreno di fondazione. Si producano tavole, grafici e verifiche in grado di illustrare gli elementi più significativi e rappresentativi dell’opera.
Esame di Stato per l’Abilitazione all’Esercizio della Professione di
Ingegneri Specialista/Magistrale
I Sessione – 21 Settembre 2011

Settore Civile-Ambientale


All’interno di un complesso destinato a Scuola di formazione avanzata, progettare, in un lotto rettangolare piano e privo di vincoli, un blocco residenze collettive, energeticamente autosufficiente, per ospitare 80 dipendenti in stanze doppie, con i locali accessori (lavanderia, saletta lettura, ecc.). Il dimensionamento degli alloggi dovrà consentire di poter posizionare, per ciascun alloggiato, un letto con relativo comodino, due armadi, una scrivania, una scarpiera.

Il candidato dovrà elaborare:

1. Relazione tecnico/descrittiva che illustri le scelte architettoniche, funzionali, dimensional ed impiantistiche della soluzione proposta;
2. Planimetria generale in scala adeguata;
3. piante, 2 prospetti e 2 sezioni in scala 1:100;
4. particolare di un elemento significativo della pianta in scala 1:50;
5. particolari architettonici di un infisso in scala 1:10 o 1:20;
6. schema delle strutture portanti con predimensionamento degli elementi principali;
L’analisi di un processo industriale ha permesso di individuare un modello lineare stazionario a un ingresso e un’uscita la cui rappresentazione I-U è del tipo:
\[ \ddot{y} + 2\alpha\dot{y} + \alpha^2 y = u - \dot{u} \]
dove \(u(t)\) è il segnale (scalare) di ingresso e \(y(t)\) il segnale (scalare) in uscita al sistema. La costante positiva \(\alpha\) non è nota a causa dell’incertezza nella determinazione di alcuni parametri che caratterizzano il processo.

(i) Per ricavare il coefficiente \(\alpha\) si procede misurando la risposta completa in uscita al sistema \(y(t)\) quando questo viene sollecitato con un ingresso \(u(t)\) a gradino di ampiezza unitaria. Sapendo che tale risposta è pari a \(y(t) = (1 - te^{-t})\delta(t)\) e tenendo conto che le condizioni iniziali in cui si trova il sistema all’inizio dell’esperimento non sono note, determinare il valore della costante positiva \(\alpha\) e calcolare anche le condizioni iniziali in cui si trova il sistema all’inizio dell’esperimento.

(ii) Nota ora il coefficiente \(\alpha\), volendo utilizzare il sistema in sicurezza, ci si chiede se esiste un ingresso limitato opportuno \(u(t)\) che, a partire da opportune condizioni iniziali, possa dar luogo a un’uscita che diverge per \(t\) che tende all’infinito. Se si indica la \(u(t)\) e le condizioni iniziali che producono tale risposta divergente, altrimenti giustificare la risposta.

(iii) Determinare una rappresentazione I-S-U del sistema dato indicando brevemente per quali motivi possa avere interesse ricavare una rappresentazione I-S-U di un sistema dinamico di cui sia noto, come in questo caso, solo il legame ingresso uscita.

(iv) Sia \(P(s)\) la funzione di trasferimento associata al modello lineare stazionario del processo industriale considerato sopra, con il coefficiente \(\alpha\) individuato al punto (i). Utilizzando il criterio di Nyquist, valutare la stabilità del sistema in controreazione mostrato nella figura riportata sotto, in cui \(C(s) = \frac{1}{s^2}\). Successivamente, sempre sfruttando il criterio di Nyquist, determinare il numero di poli con parte reale positiva, con parte reale nulla e con parte reale negativa della funzione di trasferimento a ciclo chiuso.

(v) Sia ancora \(P(s)\) la funzione di trasferimento associata al modello lineare stazionario del processo industriale considerato sopra, con il coefficiente \(\alpha\) individuato al punto (i). Con riferimento allo schema in controreazione mostrato in figura, determinare la funzione di trasferimento \(C(s)\) del blocco di controllo che garantisce un errore a regime nullo rispetto a riferimenti \(r(t)\) costanti e un margine di fase di almeno 45 gradi. Quali specifiche nel tempo vengono assicurare assegnando un valore sufficientemente elevato al margine di fase?

(vi) Valutare la robustezza della soluzione trovata al punto (v), in particolare discutere cosa ne è delle due specifiche (di precisione e sul margine di fase) se, utilizzando il controllore progettato al punto (v), il valore reale della costante \(\alpha\) presente nella \(P(s)\) può risultare fino al 20 % diverso dal valore nominale calcolato al punto (i) (cioè se per esempio il valore di \(\alpha\) calcolato al punto (i) fosse 10, il valore reale di \(\alpha\) si potrebbe trovare in tutto l’intervallo [8;12]).
Esami di Stato – settembre 2011

LAUREA IN INGEGNERIA ENERGETICA SPECIALISTICA e/o MAGISTRALE

PROVA PROGETTUALE (8 ore)

Uno stabilimento produttivo funzionante a ciclo integrale sia caratterizzato dai seguenti fabbisogni energetici:

- energia elettrica annua 43000 MWh con potenza di picco pari di 8,0 MW;
- energia termica annua 135000 MWh sotto forma di vapore surriscaldato a 250°C e 10 bar ass. (restituito sotto forma di acqua calda a 70°C) con il seguente profilo di carico:
  A) 3000 ore a 19,0 MW
  B) 4000 ore a 15,0 MW
  C) 1760 ore a 9,0 MW

e che detti fabbisogni siano coperti nel modo seguente:

- energia elettrica integralmente acquistata in rete;
- energia termica prodotta in loco tramite caldaia alimentata a combustibile avente un rendimento medio di 0,80.

Si analizzi la fattibilità di passaggio ad un sistema cogenerativo idoneo a soddisfare pienamente la domanda termica dello stabilimento, costituito da una TG e da un GVR ad un livello di pressione per la produzione del vapore surriscaldato.

Sulla base di calcoli e di valutazioni di massima ed assunzioni effettuate con buon senso tecnico, si valutino:

- la potenzialità nominale del GVR (espressa in t/h vapore)
- le temperature d’ingresso e uscita fumi del GVR
- la portata fumi evolvente nel GVR
- la potenza nominale della TG da installare;
- le potenze generate dalla TG ai carichi ridotti idonee a soddisfare rispettivamente i carichi termici B e C;
- i rendimenti di 1° principio $\eta=(P_e+\Phi_t)/\Phi_{comb}$ del sistema cogenerativo nelle condizioni A, B e C;
- il surplus annuo di energia elettrica (MWh/anno) prodotta dalla TG e ceduta alla rete dal nuovo impianto cogenerativo;
- il valore dell’indice di risparmio energetico IRE (%) nelle 3 condizioni A, B, C e annuale complessivo assumendo in tutti i casi come rendimenti di riferimento per la produzione separata $\eta_e=37.4\%$ e $\eta_t=80\%$. 
Esame di stato Ingegneria Gestionale
IV prova specialisti

Un’azienda manifatturiera produce due tipologie di prodotto, A e B: il primo costituito da quattro componenti, A1, A2, A3 e A4; il secondo costituito da due componenti, B1 e B2.


<table>
<thead>
<tr>
<th>Componenti prodotto A</th>
<th>Operazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2</td>
<td>Op1, Op3, Op4</td>
</tr>
<tr>
<td>A3</td>
<td>Op6, Op7</td>
</tr>
<tr>
<td>A4</td>
<td>Op5, Op6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Componenti prodotto B</th>
<th>Operazioni</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Op5, Op6, Op8</td>
</tr>
</tbody>
</table>

Le operazioni hanno tempi macchina deterministici con le seguenti durate: op1, op3, e op4 60min, op2 45min, op5 100min, op6 20min, op7 50min, op8 70 min. Le operazioni di assemblaggio per il prodotto A sono op10, op11, op12 e op13 ed hanno durata rispettivamente 15min, 20min, 20min, e 18min, mentre le operazioni di assemblaggio per il prodotto B sono op11 e op12 e durano 20min ciascuna.

Ogni lavorazione è eseguita da una macchina dedicata. Il tempo di assemblaggio di un’unità del prodotto A richiede 10 ore e di un’unità del prodotto B richiede 15 ore. L’impianto lavora tutti i giorni (365 giorni l’anno) su tre turni di 8 ore.

Deve essere eseguito un controllo di qualità sui prodotti finiti (CQPF) dopo l’assemblaggio e un controllo di qualità intermedio (CQI) prima dell’assemblaggio. Il CQI prevede un tempo di processamento di 2 ore per unità di prodotto di tipo A e 3 ore per unità di prodotto di tipo B, e, statisticamente fornisce un 15% di difettosità per prodotti di tipo A e 12% per prodotti di tipo B. Un’unità difettosa viene mandata in un’apposita area di “troubleshooting” dove statisticamente il 75% dei prodotti che pervengono può essere “riparato” con tempi medi di 40 minuti per unità. Le parti che escono dal troubleshooting vengono poi reistradate a monte dell’assemblaggio.

Il CQPF effettuato su prodotti finiti di A e di B rivela statisticamente il 2% di difettosità e ha durata di 60 minuti per ogni unità. Anche in questo caso le unità difettose sono inviate nell’area di “troubleshooting” dove le difettosità vengono eliminate al 95% in un tempo medio di 20 minuti per unità.

La gestione dei trasferimenti da e per il troubleshooting avviene tramite carrelli e richiedono 5 minuti ciascuno. Ogni carrello può avere capacità di carico variabile. I prodotti A e B presentano la stessa domanda annuale e è disponibile una serie storica delle produzioni mensili effettuate negli ultimi due anni riportate su base mensile: 180, 180, 200, 250, 250, 300, 350, 350, 300, 250, 250, 250, 170, 170, 280, 310, 310, 350, 400, 400, 400, 300, 250, 250.

- Progettare, nel modo più efficiente, l’impianto di produzione di cui sopra. Definire i flussi fisici nell'impianto con particolare riferimento all'organizzazione dei flussi da e per il troubleshooting, dimensionando in modo opportuno la capacità ed il numero dei carrelli necessari.
Esame di Stato
Prova Progettuale per Ingegneria Medica

Una trave di lunghezza $L$ caratterizzata da modulo di Young $E$ e momento di inerzia $I$ costanti nel tempo e di valore indipendente dalla sollecitazione, incastrata ad un estremo ($x = 0$), è sottoposta ad un carico di punta sull'altro estremo libero ($x = L$), del tipo: $F = F_0 + F_m \sin(\omega t)$, con $f = 10/2\pi$ Hz. La trave, in un primo momento disposta orizzontalmente, viene deflessa verso il basso e messa in vibrazione.

Della trave è accessibile solamente nel punto $x = L/2$ dove deve essere effettuata la misura del suo spostamento $S(L/2) = 0.002$ metri $+0.0001 \sin(\omega t)$ metri, allo scopo di poter determinare lo spostamento a distanza $L$, cioè nel punto di applicazione della forza $(F_0, \omega, t)$, supposto non accessibile.

a) Il/la candidato/a progetti un sistema di misura, prima a blocchi poi con qualche significativo dettaglio, in grado di determinare il valore dello spostamento, già fornito, della trave in $L/2$.

b) Il/la candidato/a determini il valore dello spostamento statico e dinamico nel punto $L$ di applicazione della forza $F(F_0, \omega, t)$. 
Esame di Stato Settore Industriale: Quarta Prova di Macchine.

Le utenze elettriche termiche di uno stabilimento industriale sono soddisfatte impiegando un impianto combinato ad un livello di pressione in assetto cogenerativo così composto:

1. Impianto top:
   - Potenza elettrica: 15 MW
   - Rapporto di compressione: 15
   - Temperatura di ingresso in turbina: 1100 °C
   - Rendimento politropico di turbina e compressore: 0.85
   - Combustibile: Gas naturale.

2. Impianto bottom
   - Pressione del vapor vivo: 30 bar
   - Temperatura del vapor vivo: 350°C
   - Pressione al condensatore: 0.1 bar
   - Rendimento isentropico tv: 0.75

L'impianto industriale richiede a fini tecnologici 12 t/h di vapore surriscaldato alla pressione di 18 bar e ad una temperatura di 220 °C; L'intera portata di vapore viene soddisfatta mediante un unico spillamento dalla turbina dell'impianto sottoposto. Le condense vengono reintegrate immediatamente a monte del condensatore ad una temperatura di 60°C mentre l'eventuale acqua di attempamento del vapore viene estratta immediatamente a valle della pompa di alimento.

Il candidato tracci dettagliatamente lo schema di impianto ed i diagrammi termodinamici nei pianti T-s ed h-s e valuti i principali parametri prestazionali dell'impianto in esame. In particolare dia una stima di:

   - Rendimento elettrico
   - Rendimento di primo principio
   - Indice di risparmio energetico.

Il candidato esegua inoltre il dimensionamento di massima della linea di espansione del vapore indicando:

   - Numero di corpi della turbina
   - Numero e tipologia di stadi per ogni corpo
   - triangoli di velocità del primo e dell'ultimo stadio della turbina.
Si supponga infine di dover rispondere ad un aumento della domanda termica corrispondente a 4 t/h di vapore saturo alla pressione di 4 bar. Valutare la possibilità di installare un banco per la produzione del vapore a valle del GVR esistente, in alternativa all'aumento della portata estratta dallo spillamento esistente.

Le tabelle del vapore sono riportate nelle pagine seguenti.
<table>
<thead>
<tr>
<th>( p )</th>
<th>( t )</th>
<th>( u' )</th>
<th>( u'' )</th>
<th>( w' )</th>
<th>( k' )</th>
<th>( k'' )</th>
<th>( r )</th>
<th>( s' )</th>
<th>( s'' )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.010</td>
<td>0.028</td>
<td>0.030</td>
<td>0.032</td>
<td>0.034</td>
<td>0.036</td>
<td>0.038</td>
<td>0.040</td>
<td>0.042</td>
<td>0.044</td>
</tr>
<tr>
<td>0.015</td>
<td>0.021</td>
<td>0.026</td>
<td>0.031</td>
<td>0.036</td>
<td>0.041</td>
<td>0.046</td>
<td>0.051</td>
<td>0.056</td>
<td>0.061</td>
</tr>
<tr>
<td>0.020</td>
<td>0.026</td>
<td>0.032</td>
<td>0.038</td>
<td>0.044</td>
<td>0.049</td>
<td>0.054</td>
<td>0.059</td>
<td>0.064</td>
<td>0.069</td>
</tr>
<tr>
<td>0.025</td>
<td>0.032</td>
<td>0.038</td>
<td>0.044</td>
<td>0.050</td>
<td>0.055</td>
<td>0.060</td>
<td>0.065</td>
<td>0.070</td>
<td>0.075</td>
</tr>
<tr>
<td>0.030</td>
<td>0.038</td>
<td>0.044</td>
<td>0.050</td>
<td>0.056</td>
<td>0.062</td>
<td>0.068</td>
<td>0.074</td>
<td>0.080</td>
<td>0.086</td>
</tr>
<tr>
<td>0.035</td>
<td>0.044</td>
<td>0.050</td>
<td>0.056</td>
<td>0.062</td>
<td>0.068</td>
<td>0.074</td>
<td>0.080</td>
<td>0.086</td>
<td>0.092</td>
</tr>
<tr>
<td>0.040</td>
<td>0.050</td>
<td>0.056</td>
<td>0.062</td>
<td>0.068</td>
<td>0.074</td>
<td>0.080</td>
<td>0.086</td>
<td>0.092</td>
<td>0.098</td>
</tr>
<tr>
<td>0.045</td>
<td>0.056</td>
<td>0.062</td>
<td>0.068</td>
<td>0.074</td>
<td>0.080</td>
<td>0.086</td>
<td>0.092</td>
<td>0.098</td>
<td>0.104</td>
</tr>
<tr>
<td>0.050</td>
<td>0.062</td>
<td>0.068</td>
<td>0.074</td>
<td>0.080</td>
<td>0.086</td>
<td>0.092</td>
<td>0.098</td>
<td>0.104</td>
<td>0.110</td>
</tr>
</tbody>
</table>

Table 2. State of Saturation (Pressure Table)
<table>
<thead>
<tr>
<th>p</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.89</td>
<td>2.89</td>
<td>1.69</td>
<td>0.99</td>
<td>0.37</td>
<td>0.89</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>3</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>4</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>5</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>6</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>7</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>8</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>9</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>10</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>11</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>12</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>13</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>14</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>15</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>16</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>17</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>18</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>19</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>20</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>21</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>22</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>23</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>24</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>25</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>26</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>27</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>28</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>29</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>30</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>31</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>32</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>33</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>34</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>35</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>36</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>37</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>38</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>39</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>40</td>
<td>1.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>( p )</td>
<td>( t )</td>
<td>( u' )</td>
<td>( u'' )</td>
<td>( q'' )</td>
<td>( h' )</td>
<td>( k'' )</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>9.0</td>
<td>175.36</td>
<td>0.0011325</td>
<td>0.0418</td>
<td>4.655</td>
<td>741.64</td>
<td>2771.3</td>
</tr>
<tr>
<td>9.2</td>
<td>176.19</td>
<td>0.001126</td>
<td>0.0904</td>
<td>4.724</td>
<td>748.76</td>
<td>2773.0</td>
</tr>
<tr>
<td>9.4</td>
<td>177.21</td>
<td>0.001136</td>
<td>0.2061</td>
<td>4.883</td>
<td>753.82</td>
<td>2775.3</td>
</tr>
<tr>
<td>9.6</td>
<td>178.24</td>
<td>0.001146</td>
<td>0.2920</td>
<td>4.950</td>
<td>758.81</td>
<td>2777.6</td>
</tr>
<tr>
<td>9.8</td>
<td>179.26</td>
<td>0.001155</td>
<td>0.3831</td>
<td>5.016</td>
<td>763.81</td>
<td>2779.9</td>
</tr>
<tr>
<td>10.0</td>
<td>180.88</td>
<td>0.0012174</td>
<td>0.3943</td>
<td>5.147</td>
<td>769.81</td>
<td>2782.4</td>
</tr>
<tr>
<td>10.5</td>
<td>183.82</td>
<td>0.001283</td>
<td>0.3953</td>
<td>5.302</td>
<td>776.83</td>
<td>2785.0</td>
</tr>
<tr>
<td>11.0</td>
<td>186.87</td>
<td>0.001333</td>
<td>0.5637</td>
<td>781.93</td>
<td>2787.7</td>
<td>2072.9</td>
</tr>
<tr>
<td>11.5</td>
<td>189.98</td>
<td>0.001369</td>
<td>0.7800</td>
<td>5.880</td>
<td>786.92</td>
<td>2789.4</td>
</tr>
<tr>
<td>12.0</td>
<td>187.96</td>
<td>0.001376</td>
<td>0.8127</td>
<td>791.93</td>
<td>2791.6</td>
<td>2092.9</td>
</tr>
<tr>
<td>12.5</td>
<td>190.81</td>
<td>0.001412</td>
<td>0.9369</td>
<td>806.96</td>
<td>2794.1</td>
<td>2102.8</td>
</tr>
<tr>
<td>13.0</td>
<td>193.61</td>
<td>0.001438</td>
<td>1.0617</td>
<td>821.97</td>
<td>2796.6</td>
<td>2112.9</td>
</tr>
<tr>
<td>13.5</td>
<td>196.35</td>
<td>0.001463</td>
<td>1.1857</td>
<td>836.98</td>
<td>2799.1</td>
<td>2123.0</td>
</tr>
<tr>
<td>14.0</td>
<td>199.04</td>
<td>0.001489</td>
<td>1.3107</td>
<td>851.99</td>
<td>2801.6</td>
<td>2133.1</td>
</tr>
<tr>
<td>14.5</td>
<td>196.09</td>
<td>0.001514</td>
<td>1.3660</td>
<td>867.99</td>
<td>2804.1</td>
<td>2143.1</td>
</tr>
<tr>
<td>15.0</td>
<td>198.19</td>
<td>0.001539</td>
<td>1.4117</td>
<td>883.99</td>
<td>2806.6</td>
<td>2153.2</td>
</tr>
<tr>
<td>15.5</td>
<td>198.05</td>
<td>0.001563</td>
<td>1.4575</td>
<td>899.99</td>
<td>2809.1</td>
<td>2163.3</td>
</tr>
<tr>
<td>16.0</td>
<td>201.37</td>
<td>0.001586</td>
<td>1.5327</td>
<td>899.99</td>
<td>2811.7</td>
<td>2173.4</td>
</tr>
<tr>
<td>16.5</td>
<td>204.35</td>
<td>0.001609</td>
<td>1.5923</td>
<td>914.99</td>
<td>2814.2</td>
<td>2183.5</td>
</tr>
<tr>
<td>17.0</td>
<td>207.41</td>
<td>0.001633</td>
<td>1.6186</td>
<td>929.99</td>
<td>2816.7</td>
<td>2193.6</td>
</tr>
<tr>
<td>17.5</td>
<td>207.92</td>
<td>0.001656</td>
<td>1.6343</td>
<td>944.99</td>
<td>2819.3</td>
<td>2203.7</td>
</tr>
<tr>
<td>18.0</td>
<td>207.61</td>
<td>0.001678</td>
<td>1.6425</td>
<td>959.99</td>
<td>2821.8</td>
<td>2213.8</td>
</tr>
<tr>
<td>18.5</td>
<td>206.47</td>
<td>0.001690</td>
<td>1.6374</td>
<td>974.99</td>
<td>2824.3</td>
<td>2223.9</td>
</tr>
<tr>
<td>19.0</td>
<td>205.69</td>
<td>0.001713</td>
<td>1.6157</td>
<td>989.99</td>
<td>2826.8</td>
<td>2234.0</td>
</tr>
<tr>
<td>19.5</td>
<td>204.21</td>
<td>0.001734</td>
<td>1.5900</td>
<td>994.99</td>
<td>2829.3</td>
<td>2244.1</td>
</tr>
<tr>
<td>20.0</td>
<td>202.63</td>
<td>0.001756</td>
<td>1.5500</td>
<td>999.99</td>
<td>2831.8</td>
<td>2254.2</td>
</tr>
<tr>
<td>20.5</td>
<td>201.27</td>
<td>0.001778</td>
<td>1.5000</td>
<td>1004.99</td>
<td>2834.3</td>
<td>2264.3</td>
</tr>
<tr>
<td>21.0</td>
<td>200.14</td>
<td>0.001791</td>
<td>1.4300</td>
<td>1009.99</td>
<td>2836.8</td>
<td>2274.4</td>
</tr>
<tr>
<td>21.5</td>
<td>198.82</td>
<td>0.001803</td>
<td>1.3300</td>
<td>1014.99</td>
<td>2839.3</td>
<td>2284.5</td>
</tr>
<tr>
<td>22.0</td>
<td>197.45</td>
<td>0.001815</td>
<td>1.2000</td>
<td>1019.99</td>
<td>2841.8</td>
<td>2294.6</td>
</tr>
<tr>
<td>22.5</td>
<td>195.92</td>
<td>0.001827</td>
<td>1.0300</td>
<td>1024.99</td>
<td>2844.3</td>
<td>2304.7</td>
</tr>
<tr>
<td>23.0</td>
<td>194.25</td>
<td>0.001839</td>
<td>0.8300</td>
<td>1029.99</td>
<td>2846.8</td>
<td>2314.8</td>
</tr>
<tr>
<td>23.5</td>
<td>192.46</td>
<td>0.001851</td>
<td>0.6000</td>
<td>1034.99</td>
<td>2849.3</td>
<td>2324.9</td>
</tr>
<tr>
<td>24.0</td>
<td>190.56</td>
<td>0.001863</td>
<td>0.3400</td>
<td>1039.99</td>
<td>2851.8</td>
<td>2334.9</td>
</tr>
</tbody>
</table>

Table 2. State of Saturation (Pressure Table) (Continuation) Sättigungszustand (Drucktafel) (Fortsetzung)
### Table 3. Water and Superheated Steam (Continuation) Wasser und überhitzter Dampf (Fortsetzung)

<table>
<thead>
<tr>
<th>( t ) °C</th>
<th>( p'' ) bar</th>
<th>( h'' ) kJ/kg</th>
<th>( s'' ) kW</th>
<th>( p''' ) bar</th>
<th>( h''' ) kJ/kg</th>
<th>( s''' ) kW</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>16.53</td>
<td>2502.9</td>
<td>0.82248</td>
<td>14.87</td>
<td>2595.7</td>
<td>0.7357</td>
</tr>
<tr>
<td>60</td>
<td>17.04</td>
<td>2518.8</td>
<td>0.82804</td>
<td>15.34</td>
<td>2621.6</td>
<td>0.7334</td>
</tr>
<tr>
<td>70</td>
<td>17.67</td>
<td>2534.7</td>
<td>0.83386</td>
<td>15.81</td>
<td>2644.5</td>
<td>0.7312</td>
</tr>
<tr>
<td>80</td>
<td>18.30</td>
<td>2550.7</td>
<td>0.83979</td>
<td>16.27</td>
<td>2667.4</td>
<td>0.7290</td>
</tr>
<tr>
<td>90</td>
<td>18.94</td>
<td>2566.7</td>
<td>0.84585</td>
<td>16.73</td>
<td>2690.3</td>
<td>0.7268</td>
</tr>
<tr>
<td>100</td>
<td>19.58</td>
<td>2582.7</td>
<td>0.85195</td>
<td>17.19</td>
<td>2713.2</td>
<td>0.7245</td>
</tr>
<tr>
<td>110</td>
<td>20.22</td>
<td>2598.7</td>
<td>0.85808</td>
<td>17.66</td>
<td>2736.1</td>
<td>0.7222</td>
</tr>
<tr>
<td>120</td>
<td>20.86</td>
<td>2614.7</td>
<td>0.86424</td>
<td>18.12</td>
<td>2759.0</td>
<td>0.7199</td>
</tr>
<tr>
<td>130</td>
<td>21.50</td>
<td>2630.8</td>
<td>0.87043</td>
<td>18.59</td>
<td>2781.9</td>
<td>0.7176</td>
</tr>
<tr>
<td>140</td>
<td>22.14</td>
<td>2646.8</td>
<td>0.87666</td>
<td>19.05</td>
<td>2803.8</td>
<td>0.7153</td>
</tr>
<tr>
<td>150</td>
<td>22.78</td>
<td>2662.9</td>
<td>0.88293</td>
<td>19.52</td>
<td>2825.7</td>
<td>0.7130</td>
</tr>
<tr>
<td>160</td>
<td>23.42</td>
<td>2679.0</td>
<td>0.88924</td>
<td>19.99</td>
<td>2847.6</td>
<td>0.7107</td>
</tr>
<tr>
<td>170</td>
<td>24.06</td>
<td>2705.1</td>
<td>0.89559</td>
<td>20.46</td>
<td>2869.5</td>
<td>0.7084</td>
</tr>
<tr>
<td>180</td>
<td>24.70</td>
<td>2731.2</td>
<td>0.90198</td>
<td>20.93</td>
<td>2891.4</td>
<td>0.7061</td>
</tr>
<tr>
<td>190</td>
<td>25.34</td>
<td>2757.3</td>
<td>0.90841</td>
<td>21.40</td>
<td>2913.3</td>
<td>0.7038</td>
</tr>
<tr>
<td>200</td>
<td>25.98</td>
<td>2783.4</td>
<td>0.91496</td>
<td>21.87</td>
<td>2935.2</td>
<td>0.7015</td>
</tr>
<tr>
<td>210</td>
<td>26.62</td>
<td>2809.5</td>
<td>0.92154</td>
<td>22.34</td>
<td>2957.1</td>
<td>0.6992</td>
</tr>
<tr>
<td>220</td>
<td>27.26</td>
<td>2835.6</td>
<td>0.92816</td>
<td>22.81</td>
<td>2979.0</td>
<td>0.6969</td>
</tr>
<tr>
<td>230</td>
<td>27.90</td>
<td>2861.7</td>
<td>0.93482</td>
<td>23.28</td>
<td>3000.9</td>
<td>0.6946</td>
</tr>
<tr>
<td>240</td>
<td>28.54</td>
<td>2887.8</td>
<td>0.94152</td>
<td>23.75</td>
<td>3022.8</td>
<td>0.6923</td>
</tr>
<tr>
<td>250</td>
<td>29.18</td>
<td>2914.0</td>
<td>0.94826</td>
<td>24.22</td>
<td>3044.7</td>
<td>0.6900</td>
</tr>
<tr>
<td>260</td>
<td>29.82</td>
<td>2940.1</td>
<td>0.95504</td>
<td>24.69</td>
<td>3066.6</td>
<td>0.6877</td>
</tr>
<tr>
<td>270</td>
<td>30.46</td>
<td>2966.3</td>
<td>0.96186</td>
<td>25.16</td>
<td>3088.5</td>
<td>0.6855</td>
</tr>
<tr>
<td>280</td>
<td>31.10</td>
<td>2992.5</td>
<td>0.96872</td>
<td>25.63</td>
<td>3110.4</td>
<td>0.6832</td>
</tr>
<tr>
<td>290</td>
<td>31.74</td>
<td>3018.7</td>
<td>0.97562</td>
<td>26.10</td>
<td>3132.3</td>
<td>0.6809</td>
</tr>
<tr>
<td>300</td>
<td>32.38</td>
<td>3045.0</td>
<td>0.98256</td>
<td>26.57</td>
<td>3154.2</td>
<td>0.6786</td>
</tr>
<tr>
<td>310</td>
<td>33.02</td>
<td>3071.3</td>
<td>0.98954</td>
<td>27.04</td>
<td>3176.1</td>
<td>0.6764</td>
</tr>
<tr>
<td>320</td>
<td>33.66</td>
<td>3097.6</td>
<td>1.00656</td>
<td>27.51</td>
<td>3198.0</td>
<td>0.6742</td>
</tr>
<tr>
<td>330</td>
<td>34.30</td>
<td>3124.0</td>
<td>1.01363</td>
<td>27.99</td>
<td>3220.8</td>
<td>0.6720</td>
</tr>
<tr>
<td>340</td>
<td>34.94</td>
<td>3149.4</td>
<td>1.02074</td>
<td>28.46</td>
<td>3243.7</td>
<td>0.6698</td>
</tr>
<tr>
<td>350</td>
<td>35.58</td>
<td>3174.8</td>
<td>1.02789</td>
<td>28.94</td>
<td>3266.6</td>
<td>0.6676</td>
</tr>
<tr>
<td>360</td>
<td>36.22</td>
<td>3200.3</td>
<td>1.03508</td>
<td>29.41</td>
<td>3289.5</td>
<td>0.6654</td>
</tr>
<tr>
<td>370</td>
<td>36.86</td>
<td>3225.7</td>
<td>1.04231</td>
<td>29.89</td>
<td>3312.4</td>
<td>0.6632</td>
</tr>
<tr>
<td>380</td>
<td>37.50</td>
<td>3251.1</td>
<td>1.04958</td>
<td>30.37</td>
<td>3335.3</td>
<td>0.6610</td>
</tr>
<tr>
<td>390</td>
<td>38.14</td>
<td>3276.5</td>
<td>1.05688</td>
<td>30.85</td>
<td>3358.2</td>
<td>0.6588</td>
</tr>
<tr>
<td>400</td>
<td>38.78</td>
<td>3301.9</td>
<td>1.06422</td>
<td>31.33</td>
<td>3381.1</td>
<td>0.6566</td>
</tr>
<tr>
<td>410</td>
<td>39.42</td>
<td>3327.4</td>
<td>1.07160</td>
<td>31.81</td>
<td>3404.0</td>
<td>0.6545</td>
</tr>
<tr>
<td>420</td>
<td>40.06</td>
<td>3352.8</td>
<td>1.07899</td>
<td>32.29</td>
<td>3426.9</td>
<td>0.6523</td>
</tr>
<tr>
<td>430</td>
<td>40.70</td>
<td>3378.3</td>
<td>1.08642</td>
<td>32.77</td>
<td>3449.8</td>
<td>0.6502</td>
</tr>
<tr>
<td>440</td>
<td>41.34</td>
<td>3403.7</td>
<td>1.09388</td>
<td>33.25</td>
<td>3472.7</td>
<td>0.6480</td>
</tr>
<tr>
<td>450</td>
<td>42.00</td>
<td>3429.1</td>
<td>1.10138</td>
<td>33.73</td>
<td>3495.6</td>
<td>0.6459</td>
</tr>
<tr>
<td>460</td>
<td>42.64</td>
<td>3454.5</td>
<td>1.10891</td>
<td>34.22</td>
<td>3518.5</td>
<td>0.6438</td>
</tr>
<tr>
<td>470</td>
<td>43.28</td>
<td>3480.0</td>
<td>1.11646</td>
<td>34.71</td>
<td>3541.4</td>
<td>0.6417</td>
</tr>
<tr>
<td>480</td>
<td>43.92</td>
<td>3505.4</td>
<td>1.12405</td>
<td>35.20</td>
<td>3564.3</td>
<td>0.6396</td>
</tr>
<tr>
<td>490</td>
<td>44.56</td>
<td>3530.9</td>
<td>1.13167</td>
<td>35.69</td>
<td>3587.2</td>
<td>0.6375</td>
</tr>
<tr>
<td>500</td>
<td>45.20</td>
<td>3556.3</td>
<td>1.13933</td>
<td>36.18</td>
<td>3610.1</td>
<td>0.6354</td>
</tr>
</tbody>
</table>

Note: The table continues with similar entries for higher values of \( t \).
<table>
<thead>
<tr>
<th>€</th>
<th>(v)</th>
<th>(l)</th>
<th>(v)</th>
<th>(l)</th>
<th>(v)</th>
<th>(l)</th>
<th>(v)</th>
<th>(l)</th>
<th>(v)</th>
<th>(l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.00010000</td>
<td>0.4</td>
<td>0.00010000</td>
<td>0.4</td>
<td>0.00010000</td>
<td>0.4</td>
<td>0.00010000</td>
<td>0.4</td>
<td>0.00010000</td>
<td>0.4</td>
</tr>
<tr>
<td>20</td>
<td>0.00010015</td>
<td>48.1</td>
<td>0.00010020</td>
<td>48.1</td>
<td>0.00010025</td>
<td>48.1</td>
<td>0.00010030</td>
<td>48.1</td>
<td>0.00010035</td>
<td>48.1</td>
</tr>
<tr>
<td>40</td>
<td>0.00010045</td>
<td>72.0</td>
<td>0.00010050</td>
<td>72.0</td>
<td>0.00010055</td>
<td>72.0</td>
<td>0.00010060</td>
<td>72.0</td>
<td>0.00010065</td>
<td>72.0</td>
</tr>
<tr>
<td>60</td>
<td>0.00010090</td>
<td>96.0</td>
<td>0.00010100</td>
<td>96.0</td>
<td>0.00010110</td>
<td>96.0</td>
<td>0.00010120</td>
<td>96.0</td>
<td>0.00010130</td>
<td>96.0</td>
</tr>
<tr>
<td>80</td>
<td>0.00010135</td>
<td>120.0</td>
<td>0.00010150</td>
<td>120.0</td>
<td>0.00010160</td>
<td>120.0</td>
<td>0.00010170</td>
<td>120.0</td>
<td>0.00010180</td>
<td>120.0</td>
</tr>
<tr>
<td>100</td>
<td>0.00010190</td>
<td>144.0</td>
<td>0.00010200</td>
<td>144.0</td>
<td>0.00010210</td>
<td>144.0</td>
<td>0.00010220</td>
<td>144.0</td>
<td>0.00010230</td>
<td>144.0</td>
</tr>
<tr>
<td>120</td>
<td>0.00010235</td>
<td>168.0</td>
<td>0.00010240</td>
<td>168.0</td>
<td>0.00010250</td>
<td>168.0</td>
<td>0.00010260</td>
<td>168.0</td>
<td>0.00010270</td>
<td>168.0</td>
</tr>
<tr>
<td>140</td>
<td>0.00010275</td>
<td>192.0</td>
<td>0.00010280</td>
<td>192.0</td>
<td>0.00010290</td>
<td>192.0</td>
<td>0.00010300</td>
<td>192.0</td>
<td>0.00010310</td>
<td>192.0</td>
</tr>
<tr>
<td>160</td>
<td>0.00010315</td>
<td>216.0</td>
<td>0.00010320</td>
<td>216.0</td>
<td>0.00010330</td>
<td>216.0</td>
<td>0.00010340</td>
<td>216.0</td>
<td>0.00010350</td>
<td>216.0</td>
</tr>
<tr>
<td>180</td>
<td>0.00010355</td>
<td>240.0</td>
<td>0.00010360</td>
<td>240.0</td>
<td>0.00010370</td>
<td>240.0</td>
<td>0.00010380</td>
<td>240.0</td>
<td>0.00010390</td>
<td>240.0</td>
</tr>
<tr>
<td>200</td>
<td>0.00010395</td>
<td>264.0</td>
<td>0.00010400</td>
<td>264.0</td>
<td>0.00010410</td>
<td>264.0</td>
<td>0.00010420</td>
<td>264.0</td>
<td>0.00010430</td>
<td>264.0</td>
</tr>
<tr>
<td>220</td>
<td>0.00010435</td>
<td>288.0</td>
<td>0.00010440</td>
<td>288.0</td>
<td>0.00010450</td>
<td>288.0</td>
<td>0.00010460</td>
<td>288.0</td>
<td>0.00010470</td>
<td>288.0</td>
</tr>
<tr>
<td>240</td>
<td>0.00010475</td>
<td>312.0</td>
<td>0.00010480</td>
<td>312.0</td>
<td>0.00010490</td>
<td>312.0</td>
<td>0.00010500</td>
<td>312.0</td>
<td>0.00010510</td>
<td>312.0</td>
</tr>
<tr>
<td>260</td>
<td>0.00010515</td>
<td>336.0</td>
<td>0.00010520</td>
<td>336.0</td>
<td>0.00010530</td>
<td>336.0</td>
<td>0.00010540</td>
<td>336.0</td>
<td>0.00010550</td>
<td>336.0</td>
</tr>
<tr>
<td>280</td>
<td>0.00010555</td>
<td>360.0</td>
<td>0.00010560</td>
<td>360.0</td>
<td>0.00010570</td>
<td>360.0</td>
<td>0.00010580</td>
<td>360.0</td>
<td>0.00010590</td>
<td>360.0</td>
</tr>
<tr>
<td>300</td>
<td>0.00010595</td>
<td>384.0</td>
<td>0.00010600</td>
<td>384.0</td>
<td>0.00010610</td>
<td>384.0</td>
<td>0.00010620</td>
<td>384.0</td>
<td>0.00010630</td>
<td>384.0</td>
</tr>
<tr>
<td>320</td>
<td>0.00010635</td>
<td>408.0</td>
<td>0.00010640</td>
<td>408.0</td>
<td>0.00010650</td>
<td>408.0</td>
<td>0.00010660</td>
<td>408.0</td>
<td>0.00010670</td>
<td>408.0</td>
</tr>
<tr>
<td>340</td>
<td>0.00010675</td>
<td>432.0</td>
<td>0.00010680</td>
<td>432.0</td>
<td>0.00010690</td>
<td>432.0</td>
<td>0.00010700</td>
<td>432.0</td>
<td>0.00010710</td>
<td>432.0</td>
</tr>
<tr>
<td>360</td>
<td>0.00010715</td>
<td>456.0</td>
<td>0.00010720</td>
<td>456.0</td>
<td>0.00010730</td>
<td>456.0</td>
<td>0.00010740</td>
<td>456.0</td>
<td>0.00010750</td>
<td>456.0</td>
</tr>
<tr>
<td>380</td>
<td>0.00010755</td>
<td>480.0</td>
<td>0.00010760</td>
<td>480.0</td>
<td>0.00010770</td>
<td>480.0</td>
<td>0.00010780</td>
<td>480.0</td>
<td>0.00010790</td>
<td>480.0</td>
</tr>
<tr>
<td>400</td>
<td>0.00010795</td>
<td>504.0</td>
<td>0.00010800</td>
<td>504.0</td>
<td>0.00010810</td>
<td>504.0</td>
<td>0.00010820</td>
<td>504.0</td>
<td>0.00010830</td>
<td>504.0</td>
</tr>
<tr>
<td>420</td>
<td>0.00010835</td>
<td>528.0</td>
<td>0.00010840</td>
<td>528.0</td>
<td>0.00010850</td>
<td>528.0</td>
<td>0.00010860</td>
<td>528.0</td>
<td>0.00010870</td>
<td>528.0</td>
</tr>
<tr>
<td>440</td>
<td>0.00010875</td>
<td>552.0</td>
<td>0.00010880</td>
<td>552.0</td>
<td>0.00010890</td>
<td>552.0</td>
<td>0.00010900</td>
<td>552.0</td>
<td>0.00010910</td>
<td>552.0</td>
</tr>
<tr>
<td>460</td>
<td>0.00010915</td>
<td>576.0</td>
<td>0.00010920</td>
<td>576.0</td>
<td>0.00010930</td>
<td>576.0</td>
<td>0.00010940</td>
<td>576.0</td>
<td>0.00010950</td>
<td>576.0</td>
</tr>
<tr>
<td>480</td>
<td>0.00010955</td>
<td>600.0</td>
<td>0.00010960</td>
<td>600.0</td>
<td>0.00010970</td>
<td>600.0</td>
<td>0.00010980</td>
<td>600.0</td>
<td>0.00010990</td>
<td>600.0</td>
</tr>
<tr>
<td>500</td>
<td>0.00010995</td>
<td>624.0</td>
<td>0.00011000</td>
<td>624.0</td>
<td>0.00011010</td>
<td>624.0</td>
<td>0.00011020</td>
<td>624.0</td>
<td>0.00011030</td>
<td>624.0</td>
</tr>
<tr>
<td>t</td>
<td>19,0 bar</td>
<td>17,0 bar</td>
<td>17,0 bar</td>
<td>15,0 bar</td>
<td>18,0 bar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18,0 bar</td>
<td>19,0 bar</td>
<td>17,0 bar</td>
<td>17,0 bar</td>
<td>15,0 bar</td>
<td>18,0 bar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>19,0 bar</td>
<td>17,0 bar</td>
<td>17,0 bar</td>
<td>15,0 bar</td>
<td>18,0 bar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18,0 bar</td>
<td>19,0 bar</td>
<td>17,0 bar</td>
<td>17,0 bar</td>
<td>15,0 bar</td>
<td>18,0 bar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>19,0 bar</td>
<td>17,0 bar</td>
<td>17,0 bar</td>
<td>15,0 bar</td>
<td>18,0 bar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18,0 bar</td>
<td>19,0 bar</td>
<td>17,0 bar</td>
<td>17,0 bar</td>
<td>15,0 bar</td>
<td>18,0 bar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>19,0 bar</td>
<td>17,0 bar</td>
<td>17,0 bar</td>
<td>15,0 bar</td>
<td>18,0 bar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18,0 bar</td>
<td>19,0 bar</td>
<td>17,0 bar</td>
<td>17,0 bar</td>
<td>15,0 bar</td>
<td>18,0 bar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Table 3. Water and Superheated Steam (Continuation)

<table>
<thead>
<tr>
<th>t (°C)</th>
<th>29 bar</th>
<th>61.069</th>
<th>0.06663</th>
<th>20.0 bar</th>
<th>61.069</th>
<th>0.06663</th>
<th>81 bar</th>
<th>61.069</th>
<th>0.06663</th>
<th>29 bar</th>
<th>61.069</th>
<th>0.06663</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000081</td>
<td>2.0</td>
<td>0.0001</td>
<td>0.000087</td>
<td>2.0</td>
<td>0.0001</td>
<td>0.000081</td>
<td>2.0</td>
<td>0.0001</td>
<td>0.000081</td>
<td>2.0</td>
<td>0.0001</td>
</tr>
<tr>
<td>0.01</td>
<td>0.000099</td>
<td>1.8107</td>
<td>0.00017</td>
<td>0.000098</td>
<td>1.8107</td>
<td>0.00017</td>
<td>0.000099</td>
<td>1.8107</td>
<td>0.00017</td>
<td>0.000099</td>
<td>1.8107</td>
<td>0.00017</td>
</tr>
<tr>
<td>0.02</td>
<td>0.000104</td>
<td>1.8076</td>
<td>0.00028</td>
<td>0.000105</td>
<td>1.8076</td>
<td>0.00028</td>
<td>0.000104</td>
<td>1.8076</td>
<td>0.00028</td>
<td>0.000104</td>
<td>1.8076</td>
<td>0.00028</td>
</tr>
<tr>
<td>0.03</td>
<td>0.000105</td>
<td>1.7954</td>
<td>0.00039</td>
<td>0.000105</td>
<td>1.7954</td>
<td>0.00039</td>
<td>0.000105</td>
<td>1.7954</td>
<td>0.00039</td>
<td>0.000105</td>
<td>1.7954</td>
<td>0.00039</td>
</tr>
<tr>
<td>0.04</td>
<td>0.000105</td>
<td>1.7934</td>
<td>0.00051</td>
<td>0.000105</td>
<td>1.7934</td>
<td>0.00051</td>
<td>0.000105</td>
<td>1.7934</td>
<td>0.00051</td>
<td>0.000105</td>
<td>1.7934</td>
<td>0.00051</td>
</tr>
<tr>
<td>0.05</td>
<td>0.000101</td>
<td>1.7977</td>
<td>0.00063</td>
<td>0.000101</td>
<td>1.7977</td>
<td>0.00063</td>
<td>0.000101</td>
<td>1.7977</td>
<td>0.00063</td>
<td>0.000101</td>
<td>1.7977</td>
<td>0.00063</td>
</tr>
<tr>
<td>0.06</td>
<td>0.000105</td>
<td>1.8005</td>
<td>0.00075</td>
<td>0.000105</td>
<td>1.8005</td>
<td>0.00075</td>
<td>0.000105</td>
<td>1.8005</td>
<td>0.00075</td>
<td>0.000105</td>
<td>1.8005</td>
<td>0.00075</td>
</tr>
<tr>
<td>0.07</td>
<td>0.000105</td>
<td>1.8032</td>
<td>0.00087</td>
<td>0.000105</td>
<td>1.8032</td>
<td>0.00087</td>
<td>0.000105</td>
<td>1.8032</td>
<td>0.00087</td>
<td>0.000105</td>
<td>1.8032</td>
<td>0.00087</td>
</tr>
<tr>
<td>0.08</td>
<td>0.000105</td>
<td>1.8057</td>
<td>0.0010</td>
<td>0.000105</td>
<td>1.8057</td>
<td>0.0010</td>
<td>0.000105</td>
<td>1.8057</td>
<td>0.0010</td>
<td>0.000105</td>
<td>1.8057</td>
<td>0.0010</td>
</tr>
<tr>
<td>0.09</td>
<td>0.000105</td>
<td>1.8078</td>
<td>0.00112</td>
<td>0.000105</td>
<td>1.8078</td>
<td>0.00112</td>
<td>0.000105</td>
<td>1.8078</td>
<td>0.00112</td>
<td>0.000105</td>
<td>1.8078</td>
<td>0.00112</td>
</tr>
<tr>
<td>0.1</td>
<td>0.000105</td>
<td>1.8096</td>
<td>0.00124</td>
<td>0.000105</td>
<td>1.8096</td>
<td>0.00124</td>
<td>0.000105</td>
<td>1.8096</td>
<td>0.00124</td>
<td>0.000105</td>
<td>1.8096</td>
<td>0.00124</td>
</tr>
<tr>
<td>0.11</td>
<td>0.000105</td>
<td>1.8111</td>
<td>0.00136</td>
<td>0.000105</td>
<td>1.8111</td>
<td>0.00136</td>
<td>0.000105</td>
<td>1.8111</td>
<td>0.00136</td>
<td>0.000105</td>
<td>1.8111</td>
<td>0.00136</td>
</tr>
<tr>
<td>0.12</td>
<td>0.000105</td>
<td>1.8124</td>
<td>0.00148</td>
<td>0.000105</td>
<td>1.8124</td>
<td>0.00148</td>
<td>0.000105</td>
<td>1.8124</td>
<td>0.00148</td>
<td>0.000105</td>
<td>1.8124</td>
<td>0.00148</td>
</tr>
<tr>
<td>0.13</td>
<td>0.000105</td>
<td>1.8135</td>
<td>0.0016</td>
<td>0.000105</td>
<td>1.8135</td>
<td>0.0016</td>
<td>0.000105</td>
<td>1.8135</td>
<td>0.0016</td>
<td>0.000105</td>
<td>1.8135</td>
<td>0.0016</td>
</tr>
</tbody>
</table>
Prova progettuale – Metallurgia

Il candidato deve progettare un volano.
1) Si individuino le variabili da tenere in considerazione per il dimensionamento: funzioni, vincoli, obiettivi.
2) Si considerino i possibili materiali, identificandone le caratteristiche fondamentali. Si valutino le possibili soluzioni in termini di prestazioni e costi.
3) Si esegua un dimensionamento di massima, assumendo opportunamente i dati necessari.
Esame di Stato

Prova Progettuale per Ingegneria Elettronica.

Il candidato/a progetti i seguenti circuiti:

1) un circuito prima a blocchi, poi descrivendo con maggior dettaglio i singoli blocchi, in grado di misurare la distanza temporale di almeno $10^{-6}$ sec. (ed eventualmente di presentare il risultato su di un display):
   a. tra due impulsi isolati di durata 20 ns, ciascuno propagantesi sulla stessa linea e di ampiezza, uno di 100 mV e l’altro di 2V.
   b. tra due impulsi isolati di durata 20 ns, propagantesi su due linee diverse e di ampiezza, uno di 100 mV e l’altro di 2V, senza sapere quale dei due arriverà per primo.

2) un circuito in grado di determinare il rapporto tra la distanza temporale tra il primo ed il secondo impulso ($T_{1,2} = 5 \times 10^{-6}$ s) e tra il secondo ed il terzo ($T_{2,3} = 10 \times 10^{-6}$ s.), sapendo che:
   a. Viene trasmesso un solo impulso per ognuna delle tre linee e che la sua durata è di 20ns;
   b. L’ordine di arrivo degli impulsi non è noto a priori.

Si consiglia il candidato/a di progettare per prima i circuiti relativi alla misura della distanza temporale ed, in un secondo momento, di progettare il circuito in grado di eseguire il rapporto tra i due tempi (ad esempio immagazzinando i valori in una memoria e presentando il risultato finale su di un display).
Prova progettuale - Informatica

Una società di autonoleggio ha necessità di sviluppare un software per la gestione del proprio parco autovetture, con le seguenti funzionalità:
- ricerca delle autovetture disponibili (in base a marca e modello);
- ricerca delle autovetture noleggiate;
- noleggio autovettura;
- rientro autovettura da noleggio;
- inserimento nuova autovettura;
- cancellazione autovettura;
- dati cliente (singolo ed aziendale)
- modalità contrattuali
- modalità di pagamento

Il candidato produca il documento di specifica per il sistema descritto. Fornisca anche indicazioni su come preparare documenti di sintesi giornalieri, settimanali e mensili per la società di autonoleggio.
In una cella sono disponibili 16 canali di traffico. Il 30% degli utenti genera 2 chiamate per ora, dove ciascuna chiamata è in media lunga 3 minuti. Il rimanente 70% degli utenti genera 4 chiamate per ora, ciascuna in media lunga 100 secondi. Nell'area coperta dalla cella è presente una densità di utenti pari a 500 utenti/km2. Si calcoli la distanza di riuso D, per celle supposte esagonale, in modo da avere probabilità di blocco per chiamata offerta non superiore allo 0,5% (si utilizzì il seguente grafico per la relazione tra probabilità di blocco, P_{block}, e traffico offerto, A0). Si consideri il solo caso di tratta uplink in cui il rapporto segnale-disturbo W/I è non inferiore a 11,3dB per un ambiente in cui la costante di propagazione è 3,6. Non si hanno settorizzazioni dovute all'antenna.

**Figura:** probabilità di blocco (P_{block}) in funzione del traffico offerto (A0) al variare del numero di canali disponibili (nch) da 6 a 20 a passo di 2 (nch = 6; 8; 10; 12; 14; 16; 18; 20).