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a b s t r a c t 

In this paper, strength properties of nanoporous materials are addressed aiming to establish novel insights 

into the influence of void-size effects. To this end, a virtual spherically-nanovoided sample of an alu- 

minium single crystal is investigated by adopting a Molecular-Dynamics computational approach. Elasto- 

plastic mechanical response, under triaxial strain-based conditions and including axisymmetric and shear 

states, are numerically experienced, identifying the corresponding limit stresses. Computed strength mea- 

sures are used to furnish estimates of strength domains, described in terms of meridian and deviatoric 

profiles. The influence of void-size effects on the computed strength properties is clearly quantified for 

different porosity levels, numerical results confirming a strengthening of the sample when the void ra- 

dius reduces. Moreover, it is shown that the occurrence and the amount of void-size effects are strongly 

dependent on the Lode angle, resulting in a shape transition of both meridian and deviatoric strength 

profiles when the void radius is varied. Finally, present results suggest porosity-dependent threshold val- 

ues for the void radius above which void-size effects tend to disappear. With respect to the actual state- 

of-the-art, useful benchmarks for assessing the effectiveness of available theoretical models are provided, 

resulting in a novel incremental contribution towards the definition of advanced modelling strategies for 

describing strength properties of nanoporous materials. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In the last decades, since the development of novel and chal-

lenging nano-technologies, nanostructured materials have yielded

a growing research interest, involving experimental tests, theoreti-

cal formulations and numerical models ( Arico et al., 2005; Lu et al.,

2004; Jenkins, 2010 ). An important class of nanostructured ma-

terials consists in nanoporous media, characterized by very fas-

cinating properties or combination of properties in terms of me-

chanical, chemical and electromagnetic features. In particular, due

to the presence of nanoscale cavities, these materials exhibit a

high capability to interact, absorb and cooperate with atoms, ions

and molecules. Moreover, they are characterised by reduced mass

density, high surface-to-volume ratio, good levels of both stiff-

ness and strength, and they generally exhibit a ductile behaviour.

Accordingly, nanoporous materials open towards groundbreaking
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unctional applications in several technical fields, including civil

nd environmental engineering, geophysics, petroleum industry,

iomechanics, chemistry. For instance, they are used to conceive

ultifunctional devices for aerospace/automotive applications, en-

rgy storage, ion-exchange, molecular biosensing and biosepara-

ion, drug delivery, catalysis, filtration, sensoring ( Jenkins, 2010 ). 

From a mechanical point of view, one of the most fundamental

spect consists in identifying and describing the constitutive re-

ponse and the strength properties of these materials, as depen-

ent on the size of voids (which is in the order of some nanome-

res), as well as on their shape and arrangement ( Dormieux and

ondo, 2010; 2013; Huang et al., 2005; Li and Huang, 2005;

onchiet et al., 2008; Monchiet and Kondo, 2013 ). As regards void-

ize effects, well-established experiments (usually based on nano-

ndentation tests) have shown that a reduction in the length-scale

f nanovoids induces an improvement of the material strength

 Biener et al., 20 05; 20 06; Hakamada and Mabuchi, 20 07 ). Such

n effect cannot be theoretically described by classical approaches

or porous materials (e.g., Gurson, 1977; Ponte Castaneda, 1991 ),
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hat are generally conceived to predict porosity effects only, and

hereby resulting in void-size-independent strength criteria. 

The influence of void size on the mechanical behaviour of

anoporous materials are related to the presence, at the cav-

ty boundaries, of self-equilibrated surface stresses ( Needs et al.,

991 ). These latter can be modelled via interface laws ( Gurtin and

urdoch, 1975 ) and they reveal fundamental in describing

he mechanical response of nanoscale structures ( Amelang and

ochmann, 2015 ) and nano-structured materials (e.g., Duan

t al., 2005b,a ), as well as for modelling strength proper-

ies of nanoporous media (e.g., Dormieux and Kondo, 2010;

013; Goudarzi et al., 2010; Monchiet and Kondo, 2013; Mosh-

aghin et al., 2012 ). As an example, by applying a limit-

nalysis approach on a hollow spherical domain, Dormieux and

ondo (2010) extended the well-known strength criterion pro-

osed by Gurson (1977) for ductile porous media to the case of

anoporous materials, aiming to predict void-size effects. The void-

ize-dependent strength criterion by Dormieux and Kondo (2010) ,

s well as the porous model by Gologanu et al. (1993;

994 ), have been successively extended by Monchiet and

ondo (2013) to the case of nanoscale spheroidal cavities, thereby

ncorporating both void-shape and void-size effects. Other an-

lytical formulations have been proposed by Dormieux and

ondo (2013) , Goudarzi et al. (2010) , Zhang and Wang (2007) and

hang et al. (2010) , by combining non-linear homogenization tech-

iques and variational arguments, and resulting in a generalization

f the Ponte–Castaneda’s strength criterion ( Ponte Castaneda, 1991 )

o nanoporous materials. 

It is worth observing that available strength models for

anoporous materials are based on a number of a priori assump-

ions. In fact, they generally include a very simple limit behaviour

f the bulk matrix, as well as a simplified representation of the

hysics underlying nanoscale effects (usually faced by introduc-

ng fictitious plastic interfaces). Nevertheless, available experimen-

al results are not sufficient to support these assumptions, so that

urrent theoretical models can be neither properly validated nor

uitably calibrated. As a matter of fact, apart from some qualita-

ive indications of the void-size influence on the material strength

evel, no further information can be deduced from the experimen-

al literature either on the three-dimensional material strength do-

ain or on the influence of the void size as a function of the load-

ng state. In this context, numerical methods may be considered as

n effective alternative to provide comparative benchmarks, allow-

ng also to successfully control a number of possible coupled ef-

ects, and thereby resulting in useful indications towards advanced

odelling strategies. 

Computational methods usually employed for modelling macro-

nd/or micro-mechanical response are not able to automatically

rovide helpful insights on nanoscale effects, since they do not in-

lude a satisfactory description of the material structure at that

ength-scale. On the contrary, and as confirmed by recent inves-

igations (e.g., Bringa et al., 2010; Borg et al., 2008; Mi et al., 2011;

ang et al., 2010; Traiviratana et al., 2008; Zhao et al., 2009 ), nu-

erical methods based on Molecular Dynamics (MD) approaches

llow to describe the material arrangement at the atomistic level,

nd thereby they can be considered as promising tools for investi-

ating the elasto-plastic behaviour of nanoporous materials. 

As a matter of fact, available studies based on MD approaches

ainly address the identification and the characterization of atom-

stic mechanisms underlying failure processes related to void

rowth and coalescence (e.g., Farrissey et al., 20 0 0; Lubarda et al.,

004; Lubarda, 2011; Marian et al., 2004; 2005; Pogorelko and

ayer, 2016; Ruestes et al., 2013; Tang et al., 2010; Traiviratana

t al., 2008 ). On the other hand and at the best of the authors’

nowledge, very few attempts have been provided in order to em-
loy these numerical strategies to furnish indications towards the

efinition of engineering strength measures for nanoporous ma-

erials. For instance, an attempt to put in relationship strength

roperties at the macroscale with MD-based evidence has been

rovided by Mi et al. (2011) and Traiviratana et al. (2008) , refer-

ing to the void-size-independent Gurson model. Nevertheless, cur-

ent MD studies are generally limited to the analysis of particular

dmissible stress states only, computed under uniaxial ( Farrissey

t al., 20 0 0; Tang et al., 2010 ), volumetric or shear conditions

 Marian et al., 20 04; 20 05 ), and therefore defining only few dis-

rete points on the a-priori unknown material strength surface,

ithout considering more complete multiaxial scenarios. In fact,

 comprehensive three-dimensional characterization of material 

trength properties requires a proper investigation of failure mech-

nisms under multiaxial loading conditions. Furthermore, no nu-

erical evidence has been yet provided concerning the influence

f void size on material strength domains. Accordingly, with re-

pect to the previously-discussed state-of-the-art, a parametric

ultiaxial loading strategy is expected to pave the way for a num-

er of original contributions, such as: (i) complete identification of

ailure surfaces and of the influence of stress invariants on material

trength properties; (ii) analysis of void-size effects on strength do-

ains; (iii) assessment of novel and effective com parative bench-

arks for validating and calibrating available theoretical formula-

ions, as well as for drawing advanced modelling strategies. 

It must be pointed out that porous and nanoporous mate-

ials may be generally characterised by irregular patterns and

andomly-distributed voids. Nevertheless, as it is customary in

lassical elasto-plastic theoretical approaches for micro/nano-

tructured materials, simple geometrical descriptions are often

onsidered. This is the case of single-voided domains and of hol-

ow sphere models ( Gurson, 1977 ), widely adopted in porous

etal plasticity and limit analysis approaches ( Dormieux and

ondo, 2010; Monchiet and Kondo, 2013; Tvergaard and Needle-

an, 1984 ). Corresponding results are strictly valid for the partic-

lar, but realistic, considered microstructure (in the case of hollow

phere models, the microstructure is the so-called Hashin Com-

osite Sphere Assemblage, ( Hashin, 1962; Leblond et al., 1994;

ichel and Suquet, 1992 )), but they generally furnish also helpful

ndications on statistically-equivalent arrangements. In this frame-

ork, domains embedding a single spherical nanovoid have been

dopted in many recent MD-based computational studies (e.g.

arrissey et al., 20 0 0; Marian et al., 20 04; 20 05; Traiviratana et al.,

008 ), addressing plastic mechanisms in nanoporous materials. 

In this paper, strength properties of an aluminium single crys-

al containing a spherical nanovoid are addressed via a Molecu-

ar Dynamics approach. A parametric analysis with respect to the

oid radius and for different porosity levels is carried out, by con-

idering different strain paths (shear, triaxial expansion and triax-

al compression) and a wide range of triaxiality scenarios (from

ure deviatoric conditions to pure hydrostatic ones). The compu-

ational model is defined in Section 2 , drawing also basic elements

f the adopted numerical procedure. With the aim to present sim-

lation results in the framework of a customary notation in plas-

icity, and by referring to average stress and strain measures, the

aigh–Westergaard (HW) coordinates are introduced. Section 3 is

evoted to analyse some preliminary results, in terms of both

tress-strain relationships and dominant atomistic mechanisms, in

rder to identify suitable strength measures for estimating limit

tress conditions for the in-silico samples. Analyses of numerically-

xperienced strength properties are provided in Section 4 , wherein

eridian and deviatoric representations of computed strength do-

ains are proposed, highlighting and discussing the influence of

oid-size effects. Finally, main concluding remarks are traced in

ection 5 . 
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Fig. 1. Computational model herein adopted for describing an aluminium nanovoided single crystal. Notation. 
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2. Problem statement and computational methods 

Let a material neighbourhood of a nanoporous medium be con-

sidered ( Fig. 1 ), characterized by a periodic nanostructure along

the global Cartesian directions X, Y and Z , and whose representa-

tive cell consists in a nano-single crystal embedding a single spher-

ical void. In the following, reference is made to a single crystal of

aluminium, whose ideal crystallographic arrangement is based on

a face-centred cubic lattice (FCC). Let the local Cartesian frame ( x,

y, z ) be introduced, with axes parallel to the global ones and with

{ e x , e y , e z } the corresponding orthonormal basis. Moreover, refer-

ring to the Miller’s notation ( Hull and Bacon, 2001 ), let the orien-

tation of FCC lattices be assumed such that crystallographic direc-

tions [100], [010] and [001] line up with axes x, y and z , respec-

tively. 

A numerical approach based on a MD strategy and imple-

mented in LAMMPS (Large-scale Atomic/Molecular Massively Paral-

lel Simulator) ( Plimpton, 1995 ) is adopted, by considering a cubic

simulation box ( Fig. 1 ) undergoing periodic boundary conditions.

The simulation domain is defined by: the edge length L ; a centred

spherical void of radius R ; the atomic arrangement C 0 , resulting

from the bulk FCC-based cubic box by suppressing all atoms be-

longing to the centred spherical region. Different values of the box

length L are herein considered, such that: 

L 

B 

= 10 

(
1 + n 

)
(1)

n being an integer number ranging from 1 to 10, B = a 0 / 2 be-

ing the length-scale of the Burgers vector b = B 〈 110 〉 associated to

perfect dislocations along slip directions of type 〈 110 〉 , and a 0 be-

ing the lattice constant (equal to 4.04 Å for aluminium at room

temperature ( Mishin et al., 1999 )). Accordingly, for a fixed mate-

rial porosity p , defined as p = 4 πR 3 / 3 L 3 , varying the box length L

corresponds to proportionally vary the void radius R . For instance,

referring to the case p = 1% , R varies from 0.541 nm to 2.977 nm

when L / B varies from 20 ( n = 1 ) to 110 ( n = 10 ). It is worth observ-

ing that, since the cut-off distance r c for the aluminium is equal

to 0.628 nm ( Mishin et al., 1999 ), assumption in Eq. (1) allows to

satisfy the minimum image convention ( Allen and Tildesley, 1991 ),

resulting in the consistency requirement L > 2 r c for any n ≥ 1. 

Vector velocities v i ( i = 1 . . . N) of the N atoms in C 0 are ini-

tialized as non-physical random vectors. In order to obtain a

physically-consistent simulation domain at the temperature T ∗ =
300 K and with zero pressure at the domain boundaries, a prelim-

inary equilibration step is performed by simulating 30 picoseconds

via a Nose–Hoover time-integration scheme (e.g., Plimpton, 1995 ).

As a result, the statistically-equilibrated configuration C ∗ is ob-

t  
ained, consisting in a cubic simulation domain with the edge

ength equal to L ∗. For the sake of compactness, values of L ∗ ob-

ained from this preliminary equilibration step are omitted, con-

isting however in percentage differences with respect to L always

ess then 0.3%. 

Afterwards, considering C ∗ as the reference configuration at the

ime t = 0 , an incremental strain-driven deformation process is

imulated, considering a fixed time-step �t . Denoting with t the

ctual value of the time variable, a measure of the actual strain

ensor for the overall simulation domain is assumed to be ex-

ressed by: 

 

(
t 
)

= χt 
(
D x e x � e x + D y e y � e y + D z e z � e z 

)
(2)

here χ is a positive strain-rate constant parameter, and D x , D y 

nd D z are assigned dimensionless quantities. Accordingly, the pre-

cribed increments of the box lengths at each time-step result in

L q = L ∗D q χ �t, with q = x, y, z. 

As a notation rule, the following three strain invariants are in-

roduced: I D 
1 

= tr D , J D 
2 

= D d : D d / 2 and J D 
3 

= det D d , where D d =
 − (I D 1 / 3) 1 is the deviatoric strain tensor and 1 is the second-

rder unit tensor ( 1 ij = δij , with δij the Kronecker symbol). More-

ver, referring to a strain-based Haigh-Westergaard notation (see

or instance Menetrey and Willam, 1995 ), the strain Lode an-

le θD ∈ [0 , π/ 3] is defined such that: cos 3 θD = 3 
√ 

3 J D 
3 
/ [2( J D 

2 
) 3 / 2 ] .

hen necessary, reference is also made to the following invariant

train measures: D m 

= I D 1 / 3 and D eq = 

√ 

J D 
2 

. 

In order to analyse the sample response under a broad range of

riaxial strain-based conditions, three deformation paths are sim-

lated, corresponding to θD = 0 (triaxial strain expansion, denoted

s TXE D ), θD = π/ 3 (triaxial strain compression, denoted as TXC D ),

nd θD = π/ 6 (shear strain conditions, denoted as SHR D ). Further-

ore, the following choices of the dimensionless quantities D x , D y 

nd D z are considered: 

TXE D : D x = D y = λ, D z = 1 

TXC D : D y = D z = 1 , D x = η

SHR D : D x = 1 , D y = (1 + μ) / 2 , D z = μ

(3)

For any choice in Eq. (3) , and referring to the case of a non-

egative first invariant I D 
1 
, different scenarios are simulated. In de-

ail, several strain-based triaxiality levels, ranging from a pure de-

iatoric condition ( D m 

= 0 ) to a pure hydrostatic one ( D eq = 0 ), are

ccounted for by varying the dimensionless coefficients λ, η and

, as summarised in Table 1 . 

In order to achieve effective results with a reasonable com-

utational time, numerical simulations are performed by consid-

ring χ = 5 · 10 9 s −1 . Such a strain-rate value is consistent with

hose usually adopted in the recent MD-based literature, ranging
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Table 1 

Values adopted for parameters λ, η and μ introduced in Eq. (3) to describe different triaxiality 

levels, ranging from a pure deviatoric condition ( D m = 0 ) to a pure hydrostatic one ( D eq = 0 ). 

D m = 0 D eq = 0 

λ (TXE D ) −0 . 5 −0 . 4 −0 . 3 −0 . 2 −0 . 1 0 0 .25 0 .5 1 

η (TXC D ) −2 −1 . 8 −1 . 6 −1 . 4 −1 . 2 −1 −0 . 5 0 1 

μ (SHR D ) −1 −0 . 8 6 −0 . 7 3 −0 . 6 −0 . 4 6 −0 . 3 0 0 . 3 1 
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rom 10 7 to 10 12 s −1 ( Bringa et al., 2010; Horstemeyer et al., 2001;

i et al., 2011; Pogorelko and Mayer, 2016; Ruestes et al., 2013;

eppala et al., 2004; Shabib and Miller, 2009; Tang et al., 2010;

raiviratana et al., 2008; Zhao et al., 2009 ), and it can be ex-

erimentally obtained via laser-shock techniques ( Lubarda et al.,

004 ). As a further consistency indication for such a choice,

orstemeyer et al. (2001) numerically proved that the yield

trength for FCC metals becomes practically insensitive to the

train rate for values lower than 10 10 s −1 . 

Adopting a time-step equal to �t = 1 femtosecond, trajecto-

ies of atoms are determined by integrating the Newton’s second

aw via the Verlet algorithm ( Verlet, 1967 ). As a result, the actual

verage stress tensor is computed as the superposition of atom-

stic kinetic contributions and pairwise interactions, and it is de-

cribed via the following virial formula (e.g., Subramaniyan and

un, 2008 ): 

( t ) = − 1 

V at 

N ∑ 

i =1 

(
m i v i � v i + 

N ∑ 

j � = i, j =1 

f i j 

r i j � r i j 

r i j 

)
(4)

here V at is the total atomic volume, m i is the mass of the atom i ,

nd f i j = ∂ E/∂ r i j is the modulus of the interaction force between

toms i and j . The total energy E of the system is defined in agree-

ent with the Embedded Atom Method ( Daw and Baskes, 1984 )

s: 

 = 

N ∑ 

i =1 

F i 
(
ρ i 

)
+ 

1 

2 

N ∑ 

i =1 

N ∑ 

j =1 � = i 
�i j (r i j ) , with ρ i = 

N ∑ 

j =1 � = i 
ρ j (r i j ) 

(5) 

here r ij is the modulus of the separation vector r i j = r j − r i , with

 i identifying the position of the atom i . Accordingly, E is defined

s the superposition of two terms. The first is the sum of cohe-

ive embedding energies F i (required to include the atom i into the

lectron cloud), expressed in terms of the electron-cloud density

i (defined as the linear superposition of the neighbouring atomic

lectron densities ρ j ). The second contribution is associated to the

epulsive pairwise potential function �ij between the atom i and

ts neighbours j . 

In this study, the Haigh–Westergaard (HW) representation is

dopted for giving a three-dimensional description of the com-

uted strength states. Accordingly, denoting with θ� ∈ [0, π /3] the

tress Lode angle, a given stress state � is uniquely determined by

eferring to the following stress-invariant quantities (e.g., Khan and

uang, 1995; Lubliner, 2008 ): 

= 

I �1 √ 

3 

, r = 

√ 

2 J �
2 

, cos 3 θ� = 

3 

√ 

3 J �3 

2 

(
J �
2 

)3 / 2 
(6) 

here I �1 = tr �, J �2 = �d : �d / 2 and J �3 = det �d are the isotropic

tress invariants, and where �d = � − (I �
1 

/ 3) 1 is the deviatoric

art of the stress measure introduced in Eq. (4) . For what follows,

otation TXE �, TXC � and SHR � is introduced to indicate triax-

al stress expansion (i.e., θ� = 0 ), triaxial stress compression (i.e.,

� = π/ 3 ) and shear (i.e., θ� = π/ 6 ) stress states. Furthermore,

hen necessary, reference is made to the following invariant stress

easures: �m 

= I �
1 

/ 3 and �eq = 

√ 

J �
2 

. 
The HW representation defines a cylindrical coordinate system

(ζ , r, θ�) within the space of the principal stresses ( �1 , �2 , �3 ),

ith ζ and r being the magnitudes of the orthogonal projections

f the stress tensor � on the hydrostatic axis (i.e., �1 = �2 = �3 ,

 = 0 ) and on the deviatoric plane (or π-plane, that is ζ = const ),

espectively. It is worth to remark that, for a given stress state

(ζ , r, θ�) it is always possible to recover the corresponding stress

ensor �, allowing for possible alternative representations (based

or instance on anisotropic stress invariants, ( Hill, 1948; Monchiet

t al., 2008 )). Nevertheless, aiming to furnish possible indications

owards the characterization of material strength properties in the

ramework of a continuum description, and since actual strength

odels for nanoporous media are generally expressed in terms of

sotropic stress invariants, the HW representation is herein consid-

red as useful for such purposes. 

. Strength measure and atomistic mechanisms 

Strength properties of the herein-considered aluminium

anovoided single crystal are identified by defining, for each

eformation scenario, a limit stress state. With reference to stress

nd strain measures previously introduced, typical stress-strain

esponses computed via the present approach are shown in Figs. 2

nd 3 . They refer to the case p = 1% and L/B = 50 (corresponding

o R = 1 . 353 nm) and address the deformation path TXE D . Aiming

o furnish some indications on temperature effects related to

lasto-plastic mechanisms, two different cases are simulated: an

sothermal process (denoted as IP), and a non-isothermal one

NIP, no temperature control is used during the loading process).

tress-strain relationships presented in Fig. 2 are obtained for

hree different deformation scenarios ( λ = −0 . 5 , pure deviatoric

ondition; λ = 0 , traction test corresponding to a mixed hydro-

tatic/deviatoric condition; λ = 1 , pure hydrostatic condition).

oreover, addressing the case λ = −0 . 5 , Fig. 3 a depicts stress-

train responses computed in the IP case for different temperature

alues, and Fig. 3 b shows the temperature evolution numerically

xperienced in the NIP-based simulation. 

As main features of the resulting stress-strain responses, stress

eaks are clearly identified, indicating a critical condition for the

ample, followed by a stress-relaxation phase. Stress-strain rela-

ionships obtained by considering all the other deformation paths

nd different triaxiality levels (see Eq. (3) and Table 1 ), as well as

n the case of a bulk sample (i.e., p = 0 ), exhibit the same char-

cteristics and they are herein omitted for the sake of compact-

ess. With reference to the IP case and mainly resulting from the

emperature influence on the atomic mobility, Fig. 3 a shows that

hen the temperature increases then the stress peak reduces, and

he latter is attained at a lower strain level. Furthermore, for high

trains, material response is proven to become smoother as tem-

erature is higher, sequences of rises and falls tending to disap-

ear. On the other hand, addressing the NIP deformation process,

ig. 3 b reveals that the occurrence of the stress peak corresponds

o a significant change in the slope of the monotonically-increasing

emperature evolution. Nevertheless, as it is highlighted by com-

aring IP- and NIP-based results ( Fig. 2 ), such a heating does not

ignificantly affect either the values of the stress peaks or the
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Fig. 2. Stress-strain relationships computed for the deformation path TXE D with: λ = −0 . 5 (pure deviatoric state), λ = 0 (traction test) and λ = 1 (pure hydrostatic state). 

L/B = 50 , R = 1 . 353 nm, p = 1% . IP: isothermal process (at 300 K). NIP: non-isothermal process. 

Deq

Fig. 3. Deformation path TXE D with λ = −0 . 5 in the case L/B = 50 and for p = 1% . (a) Stress-strain responses computed considering an isothermal process (IP) and for 

different tem perature values. (b) Stress and temperature vs. strain in the case of a non-isothermal process (NIP). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e  

m  

p  

i  

(  

o  

C  

S  

F  

t  

c  

s  

A  

t  

c  

c  

r  

s  

a

 

t  

i  

t  

t

strain levels at which they occur. On the contrary, some heating-

induced effects appear for higher strains values. 

As previously stated, very few experimental tests have been

performed so far in order to characterise the mechanical re-

sponse of nanoporous materials, and the corresponding evidence

is thereby not sufficient to provide a proper validation bench-

marking for MD-based results. Nevertheless, present numerically-

experienced stress-strain features are fully in agreement with

those obtained by other well-established MD studies (e.g., Mi et al.,

2011; Ruestes et al., 2013; Traiviratana et al., 2008; Zhao et al.,

2009 ). 

The occurrence of the stress peak is assumed to identify the

limit stress state of the sample (as also assumed, for instance, by

Mi et al., 2011; Ruestes et al., 2013; Traiviratana et al., 2008; Zhao

et al., 2009 ), and the corresponding values of stress invariants I �1 ,

J �2 and J �3 allow to define a strength point (ζ , r, θ�) in the HW co-

ordinate system. In the following, strength features are computed

by referring to IP-based simulations. 

It is worth pointing out that, when the deviatoric strain level

is significant, the limit stress state of the sample is straight identi-

fied by referring to stress-strain curves expressed in terms of �eq 

versus D eq . On the other hand, when a pure hydrostatic deforma-

tion scenario is considered, numerical computations reveal that the

stress measure �eq is practically equal to zero, and thereby refer-

ence is made to the stress-strain response in terms of �m 

versus

D m 

( Fig. 2 ). 
Aiming to furnish indications for relating the numerically-

xperienced stress-strain behaviour with some basic atomistic

echanisms, MD-based results relevant to the deformation

ath TXE D with λ = −0 . 5 (for L/B = 50 , p = 1% and consider-

ng a NIP case) are post-processed in the OVITO environment

 Stukowski, 2010 ), by carrying out two different analyses. The first

ne allows to estimate the centro-symmetry deviation parameter

S . This latter is defined in agreement with Kelchner et al. (1998) ,

tukowski (2010) , and Plimpton (1995) , resulting in CS = 0 for ideal

CC lattices (i.e., neglecting any disturbance effects induced by

hermal fluctuations, ( Stukowski, 2012 )) and CS > 0 when defects,

rystallographic disorder, or different lattice structures appear. The

econd atomistic investigation is based on the Common Neighbour

nalysis (CNA) ( Honeycutt and Andemen, 1987 ) that allows to de-

ect the lattice nature of each atom, distinguishing among face-

entered cubic (FCC), hexagonal close-packed (HCP), body-centered

ubic (BCC) lattices, icosahedral (ICO) and cubic diamond (DIA) ar-

angements, or other assemblies with an unknown coordination

tructure (thereby exhibiting an amorphous nature, and denoted

s “Others”). 

As shown in Fig. 4 , due to the void presence and as a result of

he preliminary equilibration step, the CS instantaneous measure

n the reference configuration C ∗ is significantly different from 0 at

he void surface, and it is characterised by values ranging from 0

o 5 elsewhere (due to thermal fluctuations). 



S. Brach et al. / Mechanics of Materials 101 (2016) 102–117 107 

Fig. 4. Centro-symmetry distribution ( CS ), represented as one-data point per atom, 

relevant to the reference configuration C ∗ . L/B = 50 , R = 1 . 353 nm, p = 1% . 
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At each simulation step, the CNA post-processing phase is per-

ormed in order to investigate the evolution of the atomistic ar-

angement induced by the simulated deformation path, possibly

ssociated to plastic mechanisms. Nevertheless, aiming to focus on

ominant atomistic processes, the centro-symmetry parameter CS

s used to filter regions where atomic patterns significantly differ

rom the FCC lattices. In detail, in agreement with previous obser-

ations, CNA post-processing is applied to atoms characterised by

S > 5. 

The atomistic-based results obtained from the post-processing

hase and depicted in the bottom part of Fig. 5 , highlight that

 number of dislocation mechanisms, theoretically expected for

CC-based nanovoided single crystals (as briefly summarised in

ppendix A ), are properly caught by the proposed simulations in

he case of a pure deviatoric deformation scenario. Observed evi-

ence is in agreement with other well-established numerical stud-

es (e.g., Bringa et al., 2010; Marian et al., 20 04; 20 05; Tang et al.,

010; Traiviratana et al., 2008; Zhao et al., 2009 ). For instance,

arian and co-workers have obtained similar results studying the

oid growth of an aluminium nanovoided specimen, in terms of

oth volume expansion ( Marian et al., 2004 ) and applied shear an-

le ( Marian et al., 2005 ). Moreover, the herein observed disloca-

ion nucleation and propagation mechanisms are comparable with

esults proposed by Traiviratana et al. (2008) and relevant to the

ase of an uniaxial expansion of monocrystalline and bicrystalline

opper. 

As a matter of fact, the analysis of Fig. 5 reveals that for small

alues of the equivalent strain measure D eq , the sample is almost

otally composed by FCC lattices and the temperature is practically

onstant, resulting in the elastic behaviour observed in the zone z1.

t the end of this phase, for greater values of D eq , proposed results

how that Shockley partial dislocations are nucleated, leading to

he occurrence of HCP atoms (see Appendix A ). Correspondingly, a

lastic regime is activated (zone z2) and the temperature slope sig-

ificantly changes, in agreement with ( Ruestes et al., 2013 ). Once

ucleated at the end of the zone z1, leading Shockley partials glide

way from the surface of the void until they intersect along a crys-

allographic direction belonging to 〈 110 〉 (see Fig. 5 a), resulting in a

omer–Cottrell dislocation. The latter is sessile and it acts as a bar-

ier with respect to trailing partials (the so-called Lomer–Cottrell

ock ( Hull and Bacon, 2001 )). Contemporaneously, secondary slip-

ing systems are activated in other regions of the void surface. At

he end of the zone z2 a stress peak is observed when the ses-

ile arrangement breaks up ( Fig. 5 e), realising potential hotbeds

or further dislocations slipping ( Fig. 5 f) and leading to complex
islocations interactions. In the zone z3, the stress-strain relation-

hip experiences a relaxation phase, characterized by a steep drop-

ing off of the stress, followed by further rises and falls associated

o the formation, interaction and subsequent unlocking of other

essile assemblies, out of the current concern. Correspondingly, a

ignificant irreversible heating appears, as both experimental (e.g.,

ittel et al., 2006 ) and computational (e.g., Higginbotham et al.,

011 ) evidence widely confirms. 

It is worth pointing out that plastic deformation can be accom-

anied at the nanoscale by a number of other complex atomistic

nteracting processes, related to void growth and collapse mecha-

isms, dislocations emission, and shear loops ( Bringa et al., 2010;

arian et al., 20 04; 20 05; Traiviratana et al., 2008 ). Nevertheless,

iming to support the choice of a suitable strength measure via a

asic description of atomistic mechanisms only, the detailed analy-

is of such phenomena does not fall in the purposes of the present

tudy. 

. Strength analyses 

Strength points computed in agreement with considerations

raced in Section 3 are used to furnish meridian (i.e., in the plane

 ζ , r ), with θ� = const ) and deviatoric (i.e., in the plane (r, θ�) ,

ith ζ = const ) representations of the strength domain. To this

im, a non-linear least-squares fitting based on the algorithm pro-

osed by Levenberg (1944) and Marquardt (1963) is employed. 

With reference to the simulation cell introduced in Fig. 1 , the

resence of the nanovoid is expected to induce a perturbation

n the mechanical behaviour with respect to the bulk sample

namely, corresponding to p = 0 ). Accordingly, as an useful com-

arative benchmark, strength properties of the in-silico bulk spec-

men are preliminarily investigated. Furthermore, the influence of

he nanovoid on both strength-domain shape and strength values

s analysed, highlighting and discussing void-size effects, when dif-

erent porosity levels are accounted for. 

.1. Bulk sample 

Stress-strain curves obtained in the case of a bulk domain and

or different values of the simulation box length L / B are depicted

n Fig. 6 , addressing the deformation path TXE D and different tri-

xiality levels. 

As a matter of fact, the long-range nature of dislocation fields

esults in the interaction of dislocations through the cell bound-

ries, leading to possibly non-negligible periodic image effects.

hese latter are expected to be more significant when the box

ength is small. Such an occurrence is clearly highlighted by results

roposed in Fig. 6 , where significant differences in the material

echanical response occur within the full plastic regime (namely,

n the zone z3 introduced in Fig. 5 ). In detail, and as a result of pe-

iodic image effects, small values of L / B induce marked sequences

f rises and falls, characterised by average stress levels which are

igher than those obtained for large L / B . Nevertheless, periodic im-

ge effects are proven to negligibly affect the adopted strength

easure, irrespective of the considered triaxiality levels. In detail,

ig. 7 a confirms that in the case TXE D , computed strength states

re almost coincident when the box length is varied, resulting in

egligible discrepancies. Thereby, in the following the average re-

ults obtained for different L / B will be considered as representative

f strength states for the bulk sample. Similar observations can be

rovided for TXC D and SHR D deformation paths, whose results are

erein not reported for the sake of compactness. 

Fig. 7 b depicts strength results in the deviatoric plane ( π-

lane), highlighting that cross sections of the strength domain at

ifferent ζ coordinates are characterised by a triangular shape. 
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Fig. 5. (Top) Stress-strain relationship, temperature-strain relationship, and CNA results computed under a pure strain-based deviatoric condition corresponding to a non- 

isothermal deformation path TXE D ( λ = −0 . 5 , L/B = 50 , R = 1 . 353 nm, p = 1% ). z1: elastic zone; z2: activation of plastic mechanisms; z3: stress-relaxation zone. (Bottom) 

Atomic patterns and CNA results corresponding to different states within zones z2 and z3. Percentages of icosahedral (ICO) and cubic diamond (DIA) atomic arrangements 

are equal to zero. 
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Accordingly, proposed results clearly show the significant influ-

ence of all the three stress invariants I �
1 

, J �
2 

and J �
3 

. Furthermore,

the analysis of Fig. 7 a indicates that strength states computed

under pure strain-based deviatoric conditions ( λ = −0 . 5 , η = −2 ,

μ = −1 , see Table 1 ) exhibit non-negligible hydrostatic stress com-

ponents. 

Table 2 summarizes computed values of the stress Lode an-

gle θ� for different deformation paths and for several values of

ζ . As also shown in Fig. 7 b, the axisymmetric strain conditions
XE D ( θD = 0 ) and TXC D ( θD = π/ 3 ) generate stress states which

re in turn almost axisymmetric and characterised by θ� ≈ θD .

hereby, triaxial strain expansion TXE D (respectively, compression

XC D ) practically corresponds to triaxial stress expansion TXE � (re-

pectively, compression TXC �), irrespective of the value assumed

or ζ . In contrast, in the case of SHR D ( θD = π/ 6 ), the computed

alues of θ� are significantly different from θD . As a result, SHR D 

train condition does not induce a pure shear stress state SHR �

namely, corresponding to θ� = π/ 6 ). This occurrence has been
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Fig. 6. Bulk sample. Influence of the simulation box length L / B on the stress-strain response for the deformation path TXE D , for different values of λ. 
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Fig. 8. Values of the stress Lode angle θ� (normalised with respect to the corresponding value of θD ) versus ζ (top) and ζ / r (bottom), computed for a nanovoided sample 

( p = 1% ) undergoing the SHR D deformation path, and for different ratios L / B . The case of the bulk specimen is also reported. 

Table 2 

Bulk sample. Values of the stress Lode an- 

gle θ� (normalised with respect to the corre- 

sponding values of θD for deformation paths 

SHR D and TXC D ) for different hydrostatic 

stress levels. 

TXE D SHR D TXC D 

ζ [GPa] θ� [rad] θ�/θD θ�/θD 

0 0 .0018 0 .7122 0 .9969 

1 0 .0014 0 .6961 0 .9966 

2 0 .0012 0 .6746 0 .9963 

3 0 .0011 0 .6512 0 .9961 

4 0 .0011 0 .6290 0 .9961 

5 0 .0014 0 .6087 0 .9963 

6 0 .0019 0 .5898 0 .9967 

7 0 .0024 0 .5722 0 .9972 

8 0 .0028 0 .5586 0 .9979 

9 0 .0027 0 .5531 0 .9984 

10 0 .0025 0 .5584 0 .9987 
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also observed by Lemarchand et al. (2015) , as associated to the de-

pendency of strength properties on all the three stress invariants. 

Accordingly, addressing Fig. 7 a, estimated curves for strength

states relevant to the TXE D and TXC D cases straight correspond

to the intersections of the strength domain with meridian planes

θ� = 0 and θ� = π/ 3 , respectively. On the contrary, an estimate

of the strength profile in the meridian plane θ� = π/ 6 (dashed

curves) is obtained by interpolating numerical results computed by

varying θD . 

4.2. Nanovoided sample 

Figures 8 to 12 summarize numerical results relevant to

strength analyses on nanovoided samples, for a fixed value of

porosity ( p = 1% ) and for different values of the ratio L / B (this cor-

responds to proportionally vary the void radius). The case of the

bulk sample is also reported for comparison, when necessary. 

As in the case of the bulk sample, MD-based analyses have re-

vealed that axisymmetric deformation paths practically result in

axisymmetric stress states, leading to θ� ≈ θD , (see for instance

Figs. 9 and 10 ). On the other hand, a significant discrepancy be-
ween stress- and strain-based Lode angles is observed for the de-

ormation path SHR D , as depending on: the Haigh–Westergaard co-

rdinate ζ (that is, on the hydrostatic stress level), the triaxiality

arameter ζ / r , and the ratio L / B ( Fig. 8 ). Such an evidence on a

anovoided sample is in agreement with theoretical findings pro-

osed by Lemarchand et al. (2015) , obtained for a solid phase that

beys to a strength criterion depending on all the three stress in-

ariants. 

Referring to Fig. 8 , two main effects can be highlighted. Firstly,

he presence of a nanovoid tends to reduce the difference between

� and θD with respect to the bulk case, mainly for high values of

ydrostatic stress and triaxiality levels. Secondly, for a fixed value

f ζ , a reduction in the void size induces an increment of the

iscrepancy between θ� and θD , especially for a high hydrostatic

tress amount. Such an influence of the void radius tends to disap-

ear for values of L / B greater than 50 (that is, for R > 1.353 nm). 

As a general remark, the computed stress state does not sys-

ematically correspond to the applied strain one. Such an oc-

urrence is also evident in meridian planes ( Figs. 11 and 12 ),

here non-negligible hydrostatic stress components can be ob-

erved when pure strain-based deviatoric conditions are consid-

red. 

The analysis of Figs. 9 to 12 suggests a clear dependence of the

umerically-estimated strength properties on all the three stress

nvariants previously introduced. As a matter of fact, the influence

n I �
1 

and J �
2 

can be mainly observed by referring to meridian rep-

esentations in Figs. 11 and 12 , as well as the dependency on J �3 is

ighlighted by addressing the non circular profiles in π-planes of

igs. 9 and 10 . 

With respect to the actual state-of-the-art, this evidence con-

rms that a proper characterization of strength properties for

anoporous materials can be still considered as an open and

hallenging issue. In fact, the influence of the stress invariants

s not accurately taken into account in current available theo-

etical models (e.g., Dormieux and Kondo, 2010; 2013; Goudarzi

t al., 2010; Zhang and Wang, 2007; Zhang et al., 2010 ), result-

ng in an unsatisfactory description of the material strength do-

ain. For instance, non-linear homogenization-based criteria by

hang and Wang (2007) and Zhang et al. (2010) describe the

eridian strength profile as elliptic, and any dependency on the
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Fig. 9. Nanovoided sample ( p = 1% ). Numerical results (symbols) and estimated strength profiles in the π-plane. (a) ζ = 2 GPa. (b) ζ = 6 GPa. 

Fig. 10. Nanovoided sample ( p = 1% ). Numerical results (symbols) and estimated deviatoric strength profiles for different hydrostatic stress levels. (a) L/B = 30 ( R = 

0 . 812 nm). (b) L/B = 50 ( R = 1 . 353 nm). 
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Fig. 11. Nanovoided sample ( p = 1% ). Numerical results (symbols) and estimated meridian strength profiles for different values of L / B and for a TXE � state ( θ� = 0 ). The 

bulk case is also reported. 
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Fig. 12. Nanovoided sample ( p = 1% ). Numerical results (symbols) and estimated meridian strength profiles for different values of L / B . (a) TXC � ( θ� = π/ 3 ). (b) SHR �
( θ� = π/ 6 ). The bulk case is also reported. As for the bulk sample, curves for SHR � case are obtained by interpolating numerical results computed by varying θD . 
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third stress invariant is not accounted for (thereby resulting in a

circular deviatoric strength profile). This is clearly in contrast with

the obtained results, confirming that MD simulations open towards

novel insights for developing and validating more effective theoret-

ical approaches. 

Proposed meridian and deviatoric strength profiles are shown

to be significantly affected by void-size effects, mainly resulting

in the improvement of the strength properties when the void ra-

dius reduces. Occurrence and amount of such a strengthening ef-

fect strongly depend on the value assumed by the stress Lode an-

gle, as it clearly appears in Figs. 9, 11 and 12 . In detail, referring

to Fig. 9 and for a fixed hydrostatic stress level ζ , the highest in-

fluence is observed in the case of a triaxial expansion. Moreover,

a shape transition is observed in the deviatoric profiles, these lat-

ter passing from a multi-sided polygonal shape to a triangular-like

one when the void size reduces. Equivalently, an increase of the ra-
io L / B tends to mitigate the influence of the third stress invariant.

his shape-transition is observed for any hydrostatic coordinate ζ ,

nd it is associated to void-size effects only. In fact, when the void

adius is fixed, the shape of π-plane strength profiles is proven to

e constant with respect to ζ ( Fig. 10 ). 

Referring to meridian strength profiles depicted in Fig. 11 , it

s also observed that, in the TXE � case, the lower the ratio L / B

he higher the values of the profiles mean curvature are. Such

 shape-transition effect practically does not occur in TXC � and

HR � meridian planes. 

As a quantitative indication, when the void radius is reduced

rom 2.977 nm ( L/B = 110 ) to 0.812 nm ( L/B = 30 ), the strength

easure �eq at ζ = 4 GPa (resp., ζ = 8 GPa) increases of about:

0% (resp., 105% ) for TXE � (see Fig. 11 ); 5% (resp., 20% ) for TXC �

see Fig. 12 a); 11% (resp., 18% ) for SHR � (see Fig. 12 b). Neverthe-

ess, computed results for p = 1% prove that strength properties
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Fig. 13. Nanovoided sample ( p = 0 . 5% ). Numerical results (symbols) and estimated deviatoric strength profiles in the π-planes for different values of L / B . (a) ζ = 2 GPa. (b) 

ζ = 6 GPa. 

Fig. 14. Nanovoided sample ( p = 0 . 1% ). Numerical results (symbols) and estimated deviatoric strength profiles in the π-planes for different values of L / B . (a) ζ = 2 GPa. (b) 

ζ = 6 GPa. 

Fig. 15. Nanovoided sample. Numerical results (symbols) and estimated meridian strength profiles for different values of L / B and for a TXE � state ( θ� = 0 ). (a) p = 0 . 5% . (b) 

p = 0 . 1% . 
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θ  
urn out to be almost independent from the void radius for val-

es greater than 2.7 nm (i.e., for L / B greater than about 100) in the

ase TXE �, and for values greater than 1.35 nm (i.e., L / B greater

han about 50, Fig. 12 ) in the cases SHR � and TXC � . 

The influence of the porosity p on meridian and deviatoric

trength profiles is shown in Figs. 13 to 15 , relevant to poros-
ty values p = 0 . 1% and p = 0 . 5% . As expected, when p is reduced

trength properties tend to increase towards the bulk ones. As in

he case of p = 1% , Figs. 13 and 14 reveal that axisymmetric strain-

ate conditions TXE D and TXC D practically correspond to triaxial

xpansion and compression stress states, respectively, leading to

D ≈ θ� . In contrast, in the case of SHR D , the computed values of
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θ� are significantly different from θD . Comparisons among results

obtained for different porosity levels suggest that discrepancies be-

tween θ� and θD tend to reduce when porosity increases. More-

over, the occurrence of a strengthening void-size effect, previously-

described for p = 1% , is confirmed by results in Figs. 13 ( p = 0 . 5% )

and 14 ( p = 0 . 1% ), where material strength properties are proven

to increase when the void radius is reduced. As already observed in

Figs. 9 and 10 , the increase of the void radius (i.e., of L / B ) leads to

a shape transition of deviatoric strength profiles, almost irrespec-

tive of porosity level. Since the highest amount of the strength-

ening void-size effect occurs for TXE � stress states, only the cor-

responding meridian planes are reported in Fig. 15 , for the sake

of compactness. As a quantitative indication and referring to the

TXE � case, for p = 0 . 5% (resp., p = 0 . 1% ) a reduction in the void

radius from 1.49 nm (resp., 0.87 nm, L/B = 70 ) to 0.64 nm (resp.,

0.37 nm, L/B = 30 ) induces an increase in the strength measure

�eq of about 16% (resp., 13% ) for ζ = 4 GPa and of about 43%

(resp., 39% ) for ζ = 8 GPa. 

5. Conclusions 

In this paper the influence of void-size effects on strength

properties of nanoporous materials is focused by numerically-

experiencing, via a Molecular Dynamics approach, the mechanical

response of a spherically-nanovoided aluminium single crystal. The

case of a bulk sample (namely, with a null porosity) is preliminar-

ily investigated aiming to furnish a comparative benchmark. 

Although many MD-based analyses on nanoporous in-silico

samples have been recently established, they are usually limited to

the study of specific loading cases (uniaxial, volumetric or simple

shear tests), mainly focusing on the identification of void-growth

mechanisms and dislocation interactions, without providing an ef-

fective quantification of void-size effects. In detail, available results

are sufficient neither to furnish a three-dimensional description of

the corresponding strength domains (since they identify only par-

ticular stress limit conditions), nor to establish the influence of

void size as depending on the loading state, thereby not allow-

ing for a straight correlation towards the definition of engineer-

ing strength measures for nanoporous materials. Similarly, current

experimental evidence, mainly related to simple testing scenarios,

does not provide suitable indications on failure mechanisms under

multiaxial loading conditions. Therefore, available findings can not

be considered useful tools for properly assessing the effectiveness

of theoretical descriptions of strength features for nanoporous ma-

terials. 

With the aim to give novel contributions in this context, more

complex scenarios have been herein addressed, involving triaxial

strain-based expansion and compression, as well as shear strain

conditions. For each case, different triaxiality levels have been con-

sidered, describing deformation paths ranging from pure devia-

toric states to pure hydrostatic ones. For different porosity levels,

strength properties of nanoporous samples have been investigated

as a function of the void radius, in order to explore the influence

of the void size. 

Although available experimental data are not sufficient to pro-

vide an effective comparative benchmark, present numerical re-

sults have been proven to be fully consistent with findings ob-

tained via other MD-based approaches ( Bringa et al., 2010; Mar-

ian et al., 20 04; 20 05; Mi et al., 2011; Ruestes et al., 2013; Tang

et al., 2010; Traiviratana et al., 2008; Zhao et al., 2009 ), in terms of

stress-strain relationships, as well as of dominant atomistic mech-

anisms and irreversible heating occurring in the plastic regime. 

For the cases under investigation, estimates of strength domains

have been proposed. The classical Haigh-Westergaard representa-

tion, expressed by the three isotropic stress invariants, has been

employed. 
As main aspects, the analysis of meridian and deviatoric

trength profiles computed for different porosity values has shown:

• a clear influence of all the three stress invariants; 
• a complex relationship between the applied strain states and

the obtained strength ones; 
• significant void-size effects. 

In detail, numerical results have proven that an axisymmet-

ic stress state is obtained when axisymmetric strain conditions

re applied to the sample, corresponding to practically-coinciding

tress- and strain-based Lode angles. This is not the case when

hear numerical tests are performed, resulting in significant dif-

erences between applied-strain and computed-stress Lode angles.

uch a constitutive response at limit states is in agreement with

ecent theoretical findings ( Lemarchand et al., 2015 ). 

Similar effects have been also observed for the strength profiles

n the meridian planes, where non-negligible hydrostatic stress

omponents are obtained when pure deviatoric deformation paths

re considered. 

Furthermore, numerical results confirmed that a reduction in

he void size induces an enhancement of the strength proper-

ies. This is qualitatively in agreement with available experimental

 Biener et al., 20 05; 20 06; Hakamada and Mabuchi, 2007 ) and nu-

erical (e.g., Mi et al., 2011; Traiviratana et al., 2008; Zhao et al.,

009 ) findings, although these latter have been obtained by con-

idering different testing conditions, geometries and materials. 

Both occurrence and amount of void-size effects have been

roven as strongly dependent on the Lode angle, resulting in the

ighest strengthening for a triaxial expansion, and leading to a

hape-transition of deviatoric strength profiles when the void ra-

ius is varied. 

It is worth pointing out that, in the framework of an ideal pe-

iodic nanostructure, the single-crystal and single-voided reference

omain herein adopted could be considered as not properly rep-

esentative of realistic experimental samples. Nevertheless, within

he limitations of the present approach, the herein-adopted com-

utational domain enables to limit as much as possible any cou-

ling effect (such as effects associated to: shape of voids, porosity

evel, polycrystalline domains), allowing to focus on dominant in-

uence of void-size effects only. 

As a matter of fact, in a number of nanoporous strength mod-

ls (e.g., Dormieux and Kondo, 2010; 2013; Goudarzi et al., 2010;

onchiet and Kondo, 2012; Zhang et al., 2010 ), the influence of the

hird stress invariant is not accounted for, and solid phase is gen-

rally assumed to obey to a von Mises strength criterion (namely,

ndependent also from the first stress invariant). Moreover, as re-

ards the analytical description of void-size effects, it usually re-

uires some model parameters that have to be properly calibrated

nd physically interpreted. In this context, proposed numerical re-

ults, both for bulk and nanoporous cases, clearly indicate a signifi-

ant dependence of strength states from all the three stress invari-

nts, suggesting the need of improving previously-cited theoretical

escriptions. Furthermore, quantitative indications provided by the

resent approach allow to highlight some mechanical meanings

f theoretical model parameters, enabling also to establish their

hysically-consistent ranges of variation. 

Accordingly, present numerical study can be considered as an

seful and novel contribution to provide comparative benchmarks

or validating and calibrating available theoretical formulations, as

ell as for drawing novel analytical models towards a comprehen-

ive and consistent description of nanoporous materials strength

roperties. As an example, in order to pave the way to more ef-

ective theoretical modelling strategies, able to reproduce available

vidence, a richer description of the bulk strength behaviour with

espect to the von Mises one (namely, accounting for the influ-

nce of all the stress invariants) should be addressed. In this way,
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n effective description of the influence of the third stress invari-

nt combined with void-size effects would be accounted for in the

ontext of a general plastic behaviour. 
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ig. A.1. (a) An example of Shockley-partials nucleation. Perfect dislocations b 1 and b ′ 1 
nd b ′ 2 . (b) Leading partials b 3 and b ′ 3 modify the local stacking sequence of closed pack

ontrary, trailing partials b 2 and b ′ 2 remove the fault, restoring the original FCC lattice. L.C
ppendix A. Crystallographic background 

Notation based on Miller indexes ( Hull and Ba-

on, 2001 ) is used. As indicated by Marian et al. (2005) and

raiviratana et al. (2008) , in the case of a spherical voided FCC-

ased sample the maximum of the resolved shear stress is reached

n planes {111} embedding the void and angled by ± 45 ° with

espect to the sample local axes. Besides, since the energy stored

n a dislocation is proportional to the modulus of its Burgers

ector, the glide of perfect dislocations characterized by b = B 〈 110 〉
s energetically disfavoured ( Hull and Bacon, 2001 ). Referring for

nstance to closed packed planes (111) and (11 1 ) in Fig. A.1 a, let
dissociate into partials, namely leading partials b 3 and b ′ 3 , and trailing partials b 2 
ed planes {111} from FCC (sequence ABC-ABC) into HCP (sequence AB-AB). On the 

.: Lomer–Cottrell lock. 
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two perfect dislocations b 1 = B [101] and b 

′ 
1 

= B [01 1 ] be consid-

ered, belonging to the Thompson tetrahedrons HKJY and H’K’JY,

respectively. In agreement with energetic arguments discussed by

Hull and Bacon (2001) , atom in Y, instead of moving directly in K

through b 1 , moves firstly in the nearby site γ (via b 2 ) and next

in K (via b 3 ), γ being such that Y γ = γ K . As a result, the perfect

dislocation b 1 = B [101] dissociates into two Shockley partials in

the plane (11 1 ) , according to the following decomposition: 

b 1 = 

B 

3 

[112] + 

B 

3 

[2 1 1] = b 2 + b 3 (A.1)

Likewise, the perfect dislocation b 

′ 
1 = B [01 1 ] dissociates into

Shockley partials b 

′ 
2 

and b 

′ 
3 
, both belonging to the plane (111): 

b 

′ 
1 = 

B 

3 

[11 2 ] + 

B 

3 

[ 1 2 1 ] = b 

′ 
2 + b 

′ 
3 (A.2)

Furthermore, leading partials b 3 and b 

′ 
3 modify the local stack-

ing sequence of closed packed planes {111} from FCC to HCP. On

the contrary, trailing partials b 2 and b 

′ 
2 

remove the fault, restor-

ing the original FCC lattice. Thereby, Shockley partial dislocations

as in Eqs. (A.1) and (A.2) always enclose a stacking fault region,

characterized by the presence of HCP sub-arrangements ( Hull and

Bacon, 2001 ) (see Fig. A.1 b). Accordingly, the initiation of the plas-

tic deformation can be associated to the HCP occurrence. 

As regards the evolution of plastic deformation, it is strictly re-

lated to Shockley partials interactions. As a matter of fact, leading

partials b 3 and b 

′ 
3 interact each other at the intersection of slip

planes (11 1 ) and (111), yielding to a Lomer–Cottrell (LC) disloca-

tion 

B 

3 

[110] = 

B 

3 

[2 1 1] + 

B 

3 

[ 1 2 1 ] (A.3)

that does not belong to a slip plane. As a result, such a LC disloca-

tion is sessile and it acts as a barrier (the so-called Lomer–Cottrell

lock ( Hull and Bacon, 2001 )) for any additional slipping process in

planes (11 1 ) and (111), repulsing the remaining two trailing Shock-

ley partials b 2 and b 

′ 
2 
. Accordingly, material behaviour in plastic

regime strictly depends on the evolution of such a locking mecha-

nism. 
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